Part Number Hot Search : 
AL14H2CJ SK413 EDZ12B DDU4F TN5125 TK61023 223J100 S355JD
Product Description
Full Text Search
 

To Download M68HC08 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet
M68HC08
Microcontrollers
MC68HC908QY4/D 9/2002
WWW.MOTOROLA.COM/SEMICONDUCTORS
NON-DISCLOSURE
AGREEMENT
MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1
REQUIRED
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet
http://motorola.com/semiconductors The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc.
(c) Motorola, Inc., 2002
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA 3
NON-DISCLOSURE
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:
AGREEMENT
MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1
REQUIRED
Revision History
Revision History
Date September, 2002 Revision Level N/A Initial release Description Page Number(s) N/A
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 4 MOTOROLA
AGREEMENT
REQUIRED
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 25 Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 43 Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 45 Section 5. Configuration Register (CONFIG) . . . . . . . . . 55 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 59 Section 7. System Integration Module (SIM) . . . . . . . . . 75 Section 8. Oscillator Module (OSC). . . . . . . . . . . . . . . . 101 Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 113 Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 129 Section 11. Analog-to-Digital Converter (ADC) . . . . . . 151 Section 12. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 161 Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . . 171 Section 14. Keyboard Interrupt Module (KBI). . . . . . . . 177 Section 15. Computer Operating Properly (COP) . . . . 189
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA List of Sections 5
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
List of Sections Section 16. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 195 Section 17. Break Module (BREAK) . . . . . . . . . . . . . . . 201 Section 18. Electrical Specifications. . . . . . . . . . . . . . . 211 Section 19. Mechanical Specifications . . . . . . . . . . . . . 223 Section 20. Ordering Information . . . . . . . . . . . . . . . . . 227
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 6 List of Sections MOTOROLA
AGREEMENT
REQUIRED
Table of Contents
Section 1. General Description
1.1 1.2 1.3 1.4 1.5 1.6 1.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Section 2. Memory
2.1 2.2 2.3 2.4 2.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Section 3. Random-Access Memory (RAM)
3.1 3.2 3.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 7
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Table of Contents Section 4. FLASH Memory (FLASH)
4.1 4.2 4.3 4.4 4.5 4.6 4.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
AGREEMENT
REQUIRED
4.8 4.9 4.10 4.11
Section 5. Configuration Register (CONFIG)
5.1 5.2 5.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
NON-DISCLOSURE
Section 6. Central Processor Unit (CPU)
6.1 6.2 6.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 8 Table of Contents MOTOROLA
Table of Contents
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1 7.2 7.3
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79
7.4 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79 7.4.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80 7.5 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81 7.5.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.5.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 83 7.5.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84 7.6 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85 7.6.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85 7.6.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85 7.7 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 9
NON-DISCLOSURE
AGREEMENT
Section 7. System Integration Module (SIM)
REQUIRED
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table of Contents
7.7.2 7.7.2.1 7.7.2.2 7.7.2.3 7.7.3 7.7.4 7.7.5 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93
REQUIRED
7.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.9 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.9.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
AGREEMENT
Section 8. Oscillator Module (OSC)
8.1 8.2 8.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
NON-DISCLOSURE
8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.4.1 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 Internal to External Clock Switching. . . . . . . . . . . . . . . . 104 8.4.2 External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107 8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 108 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 10 Table of Contents MOTOROLA
Table of Contents
8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 8.8 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Section 9. Monitor ROM (MON)
9.1 9.2 9.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Section 10. Timer Interface Module (TIM)
10.1 10.2 10.3 10.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 11
NON-DISCLOSURE
9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4.1 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.2 VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.5 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
AGREEMENT
8.9 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.1 Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112
REQUIRED
8.5.7 8.5.8
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109 Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109
Table of Contents
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
AGREEMENT
REQUIRED
10.7 10.8 10.9
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148
NON-DISCLOSURE
Section 11. Analog-to-Digital Converter (ADC)
11.1 11.2 11.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 12 Table of Contents MOTOROLA
Table of Contents
11.7
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159
Section 12. Input/Output (I/O) Ports
12.1 12.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166 12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169
Section 13. External Interrupt (IRQ)
13.1 13.2 13.3 13.4 13.5 13.6 13.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 13
NON-DISCLOSURE
AGREEMENT
REQUIRED
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
Table of Contents Section 14. Keyboard Interrupt Module (KBI)
14.1 14.2 14.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
REQUIRED
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182 14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184 14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185 14.5 14.6 14.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187
AGREEMENT
Section 15. Computer Operating Properly (COP)
15.1 15.2 15.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
NON-DISCLOSURE
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192 15.5 15.6 15.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 14 Table of Contents MOTOROLA
Table of Contents
16.1 16.2 16.3
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198 16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 16.6 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
Section 17. Break Module (BREAK)
17.1 17.2 17.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205 17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206 17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 15
NON-DISCLOSURE
AGREEMENT
REQUIRED
Section 16. Low-Voltage Inhibit (LVI)
Table of Contents Section 18. Electrical Specifications
18.1 18.2 18.3 18.4 18.5 18.6 18.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217
AGREEMENT
REQUIRED
18.8 18.9
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221 18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
NON-DISCLOSURE
Section 19. Mechanical Specifications
19.1 19.2 19.3 19.4 19.5 19.6 19.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . 224 8-Pin Small Outline Integrated Circuit Package (Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16-Pin Plastic Dual In-Line Package (Case #648D) . . . . . . . . 225 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 16-Pin Thin Shrink Small Outline Package (Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 16 Table of Contents MOTOROLA
Table of Contents
20.1 20.2 20.3
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Table of Contents 17
NON-DISCLOSURE
AGREEMENT
REQUIRED
Section 20. Ordering Information
Table of Contents
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 18 Table of Contents MOTOROLA
AGREEMENT
REQUIRED
List of Figures
Figure 1-1 1-2 2-1 2-2 4-1 4-2 4-3 4-4 5-1 5-2 6-1 6-2 6-3 6-4 6-5 6-6 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9
Title
Page
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 MCU Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 36 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 47 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . .52 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 53 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . . 53 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 56 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 57 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .63 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA List of Figures 19
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
List of Figures
Figure 7-10 7-11 7-12 7-13 7-14 7-15 7-16 7-17 7-18 7-19 7-20 7-21 7-22 8-1 8-2 8-3 8-4 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 10-1 10-2 10-3 10-4 10-5 10-6 10-7 Title Page
REQUIRED
AGREEMENT
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 89 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 91 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 91 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . . 92 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . . 94 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 94 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . 96 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 96 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . 98 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 99 XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . .106 RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . 107 Oscillator Status Register (OSCSTAT). . . . . . . . . . . . . . . . . . 111 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . 112 Monitor Mode Circuit (External Clock, No High Voltage) . . . .116 Monitor Mode Circuit (Internal Clock, No High Voltage) . . . . .116 Monitor Mode Circuit (External Clock, with High Voltage) . . . 117 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .119 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 127 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 136 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 141 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 144 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .144 TIM Channel Status and Control Registers (TSC0:TSC1) . . . 145
NON-DISCLOSURE
20
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 List of Figures MOTOROLA
List of Figures
10-8 10-9 11-1 11-2 11-3 11-4 11-5 12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 13-1 13-2 13-3 14-1 14-2 14-3 14-4 14-5 15-1 15-2 16-1 16-2 17-1 17-2
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 149 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 152 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . .157 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 159 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 164 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 166 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 168 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Port B Input Pullup Enable Register (PTBPUE) . . . . . . . . . . . 169 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 172 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 173 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .176 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 179 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 183 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 184 Auto Wake-up Interrupt Request Generation Logic . . . . . . . . 185 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 192 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 203 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 203
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA List of Figures 21
NON-DISCLOSURE
AGREEMENT
REQUIRED
Figure
Title
Page
List of Figures
Figure 17-3 17-4 17-5 17-6 17-7 17-8 18-1 18-2 18-3 18-4 Title Page
REQUIRED
Break Status and Control Register (BRKSCR). . . . . . . . . . . . 205 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .206 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .206 Break Auxiliary Register (BRKAR) . . . . . . . . . . . . . . . . . . . . . 207 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 208 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . 209 RC versus Frequency (5 Volts @ 25C) . . . . . . . . . . . . . . . . . 216 RC versus Frequency (3 Volts @ 25C) . . . . . . . . . . . . . . . . . 219 Typical Operating IDD, with All Modules Turned On (25C) . . 220 Typical Wait Mode IDD, with ADC Turned On (25C) . . . . . . . 220
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 22 List of Figures MOTOROLA
AGREEMENT
List of Tables
Table 1-1 1-2 1-3 2-1 4-1 6-1 6-2 7-1 7-2 7-3 7-4 8-1 8-2 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9
Title
Page
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Examples of Protect Start Address. . . . . . . . . . . . . . . . . . . . . . 54 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 OSC2 Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Oscillator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Monitor Mode Signal Requirements and Options . . . . . . . . . . 117 Mode Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 121 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 123 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 124 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 124 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 125 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 126 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .126
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA List of Tables 23
NON-DISCLOSURE
AGREEMENT
Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Function Priority in Shared Pins . . . . . . . . . . . . . . . . . . . . . . . .32
REQUIRED
Data Sheet -- MC68HC908QY4
List of Tables
Table 10-1 10-2 10-3 11-1 11-2 12-1 12-2 12-3 16-1 20-1 Title Page
REQUIRED
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 147 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 24 List of Tables MOTOROLA
AGREEMENT
Section 1. General Description
1.1 Contents
1.2 1.3 1.4 1.5 1.6 1.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
1.2 Introduction
The MC68HC908QY4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is a Complex Instruction Set Computer (CISC) with a Von Neumann architecture. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. Table 1-1. Summary of Device Variations
Device MC68HC908QT1 MC68HC908QT2 MC68HC908QT4 MC68HC908QY1 MC68HC908QY2 MC68HC908QY4 FLASH Memory Size 1536 bytes 1536 bytes 4096 bytes 1536 bytes 1536 bytes 4096 bytes Analog-to-Digital Converter -- 4 ch, 8 bit 4 ch, 8 bit -- 4 ch, 8 bit 4 ch, 8 bit Pin Count 8 pins 8 pins 8 pins 16 pins 16 pins 16 pins
0.4
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA General Description 25
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
General Description 1.3 Features
Features include: * * * * * High-performance M68HC08 CPU core Fully upward-compatible object code with M68HC05 Family 5-V and 3-V operating voltages (VDD) 8-MHz internal bus operation at 5 V, 4-MHz at 3 V Trimmable internal oscillator - 3.2 MHz internal bus operation - 8-bit trim capability - 25% untrimmed - 5% trimmed * * Auto wake-up from STOP capability Configuration (CONFIG) register for MCU configuration options, including: - Low-voltage inhibit (LVI) trip point * * In-system FLASH programming FLASH security(1) On-chip in-application programmable FLASH memory (with internal program/erase voltage generation) - MC68HC908QY4 and MC68HC908QT4 -- 4096 bytes - MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, and MC68HC908QT1 -- 1536 bytes * * * 128 bytes of on-chip random-access memory (RAM) 2-channel, 16-bit timer interface module (TIM) 4-channel, 8-bit analog-to-digital converter (ADC) on MC68HC908QY2, MC68HC908QY4, MC68HC908QT2, and MC68HC908QT4
NON-DISCLOSURE
AGREEMENT
REQUIRED
*
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 26 General Description MOTOROLA
General Description Features
- Six shared with keyboard interrupt function and ADC - Two shared with timer channels - One shared with external interrupt (IRQ) - Eight extra I/O lines on 16-pin package only - High current sink/source capability on all port pins - Selectable pullups on all ports, selectable on an individual bit basis - Three-state ability on all port pins * * 6-bit keyboard interrupt with wakeup feature (KBI) Low-voltage inhibit (LVI) module features: - Software selectable trip point in CONFIG register * System protection features: - Computer operating properly (COP) watchdog - Low-voltage detection with reset - Illegal opcode detection with reset - Illegal address detection with reset * * * * * * * External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose input pin Master asynchronous reset pin (RST) shared with general-purpose input/output (I/O) pin Power-on reset Internal pullups on IRQ and RST to reduce external components Memory mapped I/O registers Power saving stop and wait modes MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 are available in these packages: - 16-pin plastic dual in-line package (PDIP) - 16-pin small outline integrated circuit (SOIC) package - 16-pin thin shrink small outline package (TSSOP)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA General Description 27
NON-DISCLOSURE
AGREEMENT
REQUIRED
*
5 or 13 bidirectional input/output (I/O) lines and one input only:
General Description
* MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are available in these packages: - 8-pin PDIP - 8-pin SOIC Features of the CPU08 include the following: * * * * * * * * * * Enhanced HC05 programming model Extensive loop control functions 16 addressing modes (eight more than the HC05) 16-bit index register and stack pointer Memory-to-memory data transfers Fast 8 x 8 multiply instruction Fast 16/8 divide instruction Binary-coded decimal (BCD) instructions Optimization for controller applications Efficient C language support
AGREEMENT NON-DISCLOSURE
REQUIRED
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908QY4.
1.5 Pin Assignments
The MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are available in 8-pin packages and the MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 in 16-pin packages. Figure 1-2 shows the pin assignment for these packages.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 28 General Description MOTOROLA
NON-DISCLOSURE
MOTOROLA General Description 29 MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1
AGREEMENT
PTB[0:7]
REQUIRED
VDD PTB DDRB POWER SUPPLY VSS
PTA0/AD0/TCH0/KBI0 PTA1/AD1/TCH1/KBI1 DDRA PTA PTA2/IRQ/KBI2 PTA3/RST/KBI3 PTA4/OSC2/AD2/KBI4 PTA5/OSC1/AD3/KBI5 CPU REGISTERS INDEX REGISTER STACK POINTER PROGRAM COUNTER CONDITION CODE REGISTER V11HINZC BREAK MODULE POWER-ON RESET MODULE CPU CONTROL 68HC08 CPU ACCUMULATOR SYSTEM INTEGRATION MODULE SINGLE INTERRUPT MODULE ALU CLOCK GENERATOR
8-BIT ADC
16-BIT TIMER MODULE 128 BYTES RAM MC68HC908QY4 AND MC68HC908QT4: 4096 BYTES MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, AND MC68HC908QT1: 1536 BYTES USER FLASH
COP MODULE MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up PTB[0:7]: Not available on 8-pin devices - MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4
General Description Pin Assignments
Figure 1-1. Block Diagram
General Description
REQUIRED
VDD PTA5/OSC1/KBI5 PTA4/OSC2/KBI4 PTA3/RST/KBI3
1 2 3 4
8 7 6 5
VSS PTA0/TCH0/KBI0 PTA1/TCH1/KBI1 PTA2/IRQ/KBI2
VDD PTA5/OSC1/AD3/KBI5 PTA4/OSC2/AD2/KBI4 PTA3/RST/KBI3
1 2 3 4
8 7 6 5
VSS PTA0/AD0/TCH0/KBI0 PTA1/AD1/TCH1/KBI1 PTA2/IRQ/KBI2
8-PIN ASSIGNMENT MC68HC908QT1 PDIP/SOIC
8-PIN ASSIGNMENT MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC
VDD
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
VSS PTB0 PTB1 PTA0/TCH0/KBI0 PTA1/TCH1/KBI1 PTB2 PTB3 PTA2/IRQ/KBI2
VDD PTB7 PTB6 PTA5/OSC1/AD3/KBI5 PTA4/OSC2/AD2/KBI4 PTB5 PTB4 PTA3/RST/KBI3
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
VSS PTB0 PTB1 PTA0/AD0/TCH0/KBI0 PTA1/AD1/TCH1/KBI1 PTB2 PTB3 PTA2/IRQ/KBI2
AGREEMENT
PTB7 PTB6 PTA5/OSC1/KBI5 PTA4/OSC2/KBI4 PTB5 PTB4 PTA3/RST/KBI3
16-PIN ASSIGNMENT MC68HC908QY1 PDIP/SOIC
16-PIN ASSIGNMENT MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC
NON-DISCLOSURE
PTA0/TCH0/KBI0 PTB1 PTB0 VSS VDD PTB7 PTB6 PTA5/OSC1/KBI5
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
PTA1/TCH1/KBI1 PTB2 PTB3 PTA2/IRQ/KBI2 PTA3/RST/KBI3 PTB4 PTB5 PTA4/OSC2/KBI4
PTA0/AD0/TCH0/KBI0 PTB1 PTB0 VSS VDD PTB7 PTB6 PTA5/OSC1/AD3/KBI5
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
PTA1/AD1/TCH1/KBI1 PTB2 PTB3 PTA2/IRQ/KBI2 PTA3/RST/KBI3 PTB4 PTB5 PTA4/OSC2/AD2/KBI4
16-PIN ASSIGNMENT MC68HC908QY1 TSSOP
16-PIN ASSIGNMENT MC68HC908QY2 AND MC68HC908QY4 TSSOP
Figure 1-2. MCU Pin Assignments
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 30 General Description MOTOROLA
General Description Pin Functions
Table 1-2 provides a description of the pin functions. Table 1-2. Pin Functions
Pin Name VDD VSS Power supply Power supply ground PTA0 -- General purpose I/O port PTA0 AD0 -- A/D channel 0 input TCH0 -- Timer Channel 0 I/O KBI0 -- Keyboard interrupt input 0 PTA1 -- General purpose I/O port PTA1 AD1 -- A/D channel 1 input TCH1 -- Timer Channel 1 I/O KBI1 -- Keyboard interrupt input 1 PTA2 -- General purpose input-only port PTA2 IRQ -- External interrupt with programmable pullup and Schmitt trigger input KBI2 -- Keyboard interrupt input 2 PTA3 -- General purpose I/O port PTA3 RST -- Reset input, active low with internal pullup and Schmitt trigger KBI3 -- Keyboard interrupt input 3 PTA4 -- General purpose I/O port PTA4 OSC2 -- XTAL oscillator output (XTAL option only) RC or internal oscillator output (OSC2EN = 1 in PTAPUE register) AD2 -- A/D channel 2 input KBI4 -- Keyboard interrupt input 4 PTA5 -- General purpose I/O port PTA5 OSC1 -- XTAL, RC, or external oscillator input AD3 -- A/D channel 3 input KBI5 -- Keyboard interrupt input 5 PTB[0:7](1) 8 general-purpose I/O ports. Description Input/Output Power Power Input/Output
Input/Output Input Input/Output Input Input/Output Input Input Input Input Input/Output Input Input Input/Output Output Output Input Input Input/Output Input Input Input Input/Output
1. The PTB pins are not available on the 8-pin packages.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA General Description 31
NON-DISCLOSURE
AGREEMENT
Input
REQUIRED
1.6 Pin Functions
General Description 1.7 Pin Function Priority
Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.
REQUIRED
NOTE:
Upon reset all pins come up as input ports regardless of the priority table. Table 1-3. Function Priority in Shared Pins
Pin Name PTA[0] Highest-to-Lowest Priority Sequence AD0 TCH0 KBI[0] PTA[0] AD1 TCH1 KBI[1] PTA[1] IRQ KBI[2] PTA[2] RST KBI[3] PTA[3] OSC2 AD2 KBI[4] PTA[4] OSC1 AD3 KBI[5] PTA[5]
AGREEMENT
PTA[1] PTA[2] PTA[3] PTA[4] PTA[5]
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 32 General Description MOTOROLA
Section 2. Memory
2.1 Contents
2.2 2.3 2.4 2.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.2 Introduction
The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: * * * * * * 4096 bytes of user FLASH for MC68HC908QT4 and MC68HC908QY4 1536 bytes of user FLASH for MC68HC908QT2, MC68HC908QT1, MC68HC908QY2, and MC68HC908QY1 128 bytes of random access memory (RAM) 48 bytes of user-defined vectors, located in FLASH 416 bytes of monitor read-only memory (ROM) 1536 bytes of FLASH program and erase routines, located in ROM
2.3 Unimplemented Memory Locations
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, unimplemented locations are shaded.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Memory 33
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Memory
REQUIRED
$0000 $003F $0040 $007F $0080 $00FF $0100 $27FF $2800 $2DFF $2E00 $EDFF $EE00 $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0F $FE10 $FFAF $FFB0 $FFBD $FFBE $FFBF $FFC0 $FFC1 $FFC2 $FFCF $FFD0 $FFFF
I/O REGISTERS 64 BYTES RESERVED 64 BYTES RAM 128 BYTES UNIMPLEMENTED 9984 BYTES AUXILIARY ROM 1536 BYTES UNIMPLEMENTED 49152 BYTES FLASH MEMORY MC68HC908QT4 AND MC68HC908QY4 4096 BYTES BREAK STATUS REGISTER (BSR) RESET STATUS REGISTER (SRSR) BREAK AUXILIARY REGISTER (BRKAR) BREAK FLAG CONTROL REGISTER (BFCR) INTERRUPT STATUS REGISTER 1 (INT1) INTERRUPT STATUS REGISTER 2 (INT2) INTERRUPT STATUS REGISTER 3 (INT3) RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR) FLASH CONTROL REGISTER (FLCR) BREAK ADDRESS HIGH REGISTER (BRKH) BREAK ADDRESS LOW REGISTER (BRKL) BREAK STATUS AND CONTROL REGISTER (BRKSCR) LVISR RESERVED FOR FLASH TEST 3 BYTES MONITOR ROM 416 BYTES FLASH 14 BYTES FLASH BLOCK PROTECT REGISTER (FLBPR) RESERVED FLASH INTERNAL OSCILLATOR TRIM VALUE RESERVED FLASH FLASH 14 BYTES USER VECTORS 48 BYTES UNIMPLEMENTED 9984 BYTES AUXILIARY ROM 1536 BYTES $0100 $27FF $2800 $2DFF $2E00 UNIMPLEMENTED 51712 BYTES $F7FF FLASH MEMORY 1536 BYTES MC68HC908QT1, MC68HC908QT2, MC68HC908QY1, and MC68HC908QY2 Memory Map $F800 $FDFF
NON-DISCLOSURE
AGREEMENT
Figure 2-1. Memory Map
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 34 Memory MOTOROLA
Memory Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R.
2.5 Input/Output (I/O) Section
Addresses $0000-$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses: * * * * * * * * * * * * * * * * * $FE00 -- Break status register, BSR $FE01 -- Reset status register, SRSR $FE02 -- Break auxiliary register, BRKAR $FE03 -- Break flag control register, BFCR $FE04 -- Interrupt status register 1, INT1 $FE05 -- Interrupt status register 2, INT2 $FE06 -- Interrupt status register 3, INT3 $FE07 -- Reserved $FE08 -- FLASH control register, FLCR $FE09 -- Break address register high, BRKH $FE0A -- Break address register low, BRKL $FE0B -- Break status and control register, BRKSCR $FE0C -- LVI status register, LVISR $FE0D -- Reserved $FFBE -- FLASH block protect register, FLBPR $FFC0 -- Internal OSC trim value -- Optional $FFFF -- COP control register, COPCTL
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Memory 35
NON-DISCLOSURE
AGREEMENT
REQUIRED
2.4 Reserved Memory Locations
Memory
REQUIRED
Addr.
Register Name Read: Port A Data Register (PTA) Write: See page 163. Reset: Read: Port B Data Register (PTB) Write: See page 167. Reset: Unimplemented
Bit 7 0
6 AWUL
5 PTA5 U PTB5
4 PTA4 U PTB4
3 PTA3 U PTB3
2 PTA2
1 PTA1 U PTB1
Bit 0 PTA0 U PTB0
$0000
U PTB7
0 PTB6
U PTB2
$0001
Unaffected by reset
$0002
AGREEMENT
$0003
Unimplemented
$0004
Read: Data Direction Register A (DDRA) Write: See page 164. Reset:
0
0
DDRA5 0 DDRB5 0
DDRA4 0 DDRB4 0
DDRA3 0 DDRB3 0
0
DDRA1 0 DDRB1 0
DDRA0 0 DDRB0 0
0
0 DDRB6 0
0 DDRB2 0
$0005
Read: Data Direction Register B DDRB7 (DDRB) Write: See page 168. Reset: 0 Unimplemented
$0006 $000A
Unimplemented
NON-DISCLOSURE
Read: Port A Input Pullup Enable OSC2EN $000B Register (PTAPUE) Write: See page 166. Reset: 0
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 0 0 0 0 0 0
0
Read: Port B Input Pullup Enable PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0 $000C Register (PTBPUE) Write: See page 169. Reset: 0 0 0 0 0 0 0 0 $000D $0019 Unimplemented
Unimplemented
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 36 Memory MOTOROLA
Memory Input/Output (I/O) Section
Read: Keyboard Status and $001A Control Register (KBSCR) Write: See page 183. Reset: Read: Keyboard Interrupt Enable Register (KBIER) Write: See page 184. Reset: Unimplemented
0
0
0
0
KEYF
0 ACKK
IMASKK 0 KBIE1 0
MODEK 0 KBIE0 0
0 0
0 AWUIE 0
0 KBIE5 0
0 KBIE4 0
0 KBIE3 0
0 KBIE2 0
$001B
0
$001C
IMASK1 0 R 0
MODE1 0 RSTEN 0(2)
$001D
ACK1 0 0 IRQEN 0 0 R 0 0 0 0 R 0
$001E
Read: Configuration Register 2 IRQPUD (1) (CONFIG2) Write: See page 56. Reset: 0
OSCOPT1 OSCOPT0 0 0
1. One-time writable register after each reset. 2. RSTEN reset to logic 0 by a power-on reset (POR) only. Read: Configuration Register 1 COPRS (1) (CONFIG1) Write: See page 57. Reset: 0
LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 0 0(2)
SSREC 0
STOP 0
COPD 0
$001F
1. One-time writable register after each reset. 2. LVI5OR3 reset to logic 0 by a power-on reset (POR) only. Read: TIM Status and Control Register (TSC) Write: See page 141. Reset: TOF 0 0 Bit 15 0 Bit 14 1 Bit 13 0 TRST 0 Bit 12 0 Bit 11 0 Bit 10 0 Bit 9 0 Bit 8 0
TOIE
TSTOP
PS2
PS1
PS0
$0020
Read: TIM Counter Register High $0021 (TCNTH) Write: See page 144. Reset: Read: TIM Counter Register Low (TCNTL) Write: See page 144. Reset:
0 Bit 7
0 Bit 6
0 Bit 5
0 Bit 4
0 Bit 3
0 Bit 2
0 Bit 1
0 Bit 0
$0022
0
0
0
0 R
0 = Reserved
0
0
0
= Unimplemented
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Memory 37
NON-DISCLOSURE
AGREEMENT
Read: IRQ Status and Control Register (INTSCR) Write: See page 176. Reset:
0
0
0
0
IRQF1
0
REQUIRED
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Memory
REQUIRED
Addr.
Register Name Read: TIM Counter Modulo Register High (TMODH) Write: See page 144. Reset: Read: TIM Counter Modulo Register Low (TMODL) Write: See page 144. Reset:
Bit 7 Bit 15 1 Bit 7 1 CH0F 0 0 Bit 15
6 Bit 14 1 Bit 6 1 CH0IE 0 Bit 14
5 Bit 13 1 Bit 5 1 MS0B 0 Bit 13
4 Bit 12 1 Bit 4 1 MS0A 0 Bit 12
3 Bit 11 1 Bit 3 1 ELS0B 0 Bit 11
2 Bit 10 1 Bit 2 1 ELS0A 0 Bit 10
1 Bit 9 1 Bit 1 1 TOV0 0 Bit 9
Bit 0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0023
$0024
AGREEMENT
Read: TIM Channel 0 Status and $0025 Control Register (TSC0) Write: See page 145. Reset: Read: TIM Channel 0 Register High (TCH0H) Write: See page 149. Reset: Read: TIM Channel 0 Register Low (TCH0L) Write: See page 149. Reset:
$0026
Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0027
Indeterminate after reset CH1F 0 0 Bit 15 0 Bit 14 0 Bit 13 0 Bit 12 0 Bit 11 0 Bit 10 0 Bit 9 0 Bit 8 CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX
Read: TIM Channel 1 Status and $0028 Control Register (TSC1) Write: See page 145. Reset: Read: TIM Channel 1 Register High (TCH1H) Write: See page 149. Reset: Read: TIM Channel 1 Register Low (TCH1L) Write: See page 149. Reset: Unimplemented
NON-DISCLOSURE
$0029
Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$002A
Indeterminate after reset
$002B $0035
Unimplemented
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 38 Memory MOTOROLA
Memory Input/Output (I/O) Section
$0036
Read: Oscillator Status Register (OSCSTAT) Write: See page 111. Reset: Unimplemented Read:
R 0
R 0
R 0
R 0
R 0
R 0
ECGON 0
ECGST
0
$0037
$0038
Oscillator Trim Register Read: (OSCTRIM) Write: See page 112. Reset: Unimplemented
TRIM7 1
TRIM6 0
TRIM5 0
TRIM4 0
TRIM3 0
TRIM2 0
TRIM1 0
TRIM0 0
$0039 $003B
Unimplemented
$003C
Read: ADC Status and Control Register (ADSCR) Write: See page 157. Reset: Unimplemented
COCO
AIEN 0
ADCO 0
CH4 1
CH3 1
CH2 1
CH1 1
CH0 1
0
$003D
$003E
Indeterminate after reset ADIV2 0 R ADIV1 0 R ADIV0 0 R 0 0 0 0 0
Read: ADC Input Clock Register $003F (ADICLK) Write: See page 159. Reset: Read: Break Status Register (BSR) Write: See page 208. Reset:
0 R
0 R
0 R
0 SBSW See note 1 0
0 R
$FE00
1. Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 96. POR: POR PIN COP ILOP ILAD MODRST LVI 0
1
0
0
0 R
0 = Reserved
0
0
0
= Unimplemented
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Memory 39
NON-DISCLOSURE
Read: ADC Data Register (ADR) Write: See page 159. Reset:
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
AGREEMENT
REQUIRED
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Memory
REQUIRED
Addr.
Register Name Read: Break Auxiliary Register (BRKAR) Write: See page 207. Reset: Read: Break Flag Control Register (BFCR) Write: See page 209. Reset:
Bit 7 0
6 0
5 0
4 0
3 0
2 0
1 0
Bit 0 BDCOP 0 R
$FE02
0 BCFE 0 0 R 0 IF14 R 0 0 R 0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE03
AGREEMENT
Read: Interrupt Status Register 1 $FE04 (INT1) Write: See page 176. Reset: Read: Interrupt Status Register 2 $FE05 (INT2) Write: See page 176. Reset: Read: Interrupt Status Register 3 $FE06 (INT3) Write: See page 176. Reset: $FE07 Reserved
IF5 R 0 0 R 0 0 R 0 R
IF4 R 0 0 R 0 0 R 0 R
IF3 R 0 0 R 0 0 R 0 R
0 R 0 0 R 0 0 R 0 R
IF1 R 0 0 R 0 0 R 0 R
0 R 0 0 R 0 0 R 0 R
0 R 0 0 R 0 IF15 R 0 R
$FE08
NON-DISCLOSURE
Read: FLASH Control Register (FLCR) Write: See page 47. Reset: Read: Break Address High Register (BRKH) Write: See page 206. Reset: Read: Break Address low Register (BRKL) Write: See page 206. Reset:
0
0
0
0
HVEN 0 Bit 11 0 Bit 3 0 0
MASS 0 Bit 10 0 Bit 2 0 0
ERASE 0 Bit 9 0 Bit 1 0 0
PGM 0 Bit 8 0 Bit 0 0 0
0 Bit 15 0 Bit 7 0 BRKE 0
0 Bit 14 0 Bit 6 0 BRKA 0
0 Bit 13 0 Bit 5 0 0
0 Bit 12 0 Bit 4 0 0
$FE09
$FE0A
Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 205. Reset:
0
0 R
0 = Reserved
0
0
0
= Unimplemented
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 40 Memory MOTOROLA
Memory Input/Output (I/O) Section
$FE0C
Read: LVIOUT LVI Status Register (LVISR) Write: See page 199. Reset: 0 Reserved for FLASH Test R
0
0
0
0
0
0
R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE0D $FE0F
Reserved for FLASH Test
R
R
R
R
R
R
R
R
Unimplemented
$FFBE
Read: FLASH Block Protect Register (FLBPR) Write: See page 53. Reset: Unimplemented
BPR7 0
BPR6 0
BPR5 0
BPR4 0
BPR3 0
BPR2 0
BPR1 0
0
0
$FFBF
$FFC0
Read: Internal Oscillator Trim Write: Value (Optional) Reset: Reserved
TRIM7 1 R
TRIM6 0 R
TRIM5 0 R
TRIM4 0 R
TRIM3 0 R
TRIM2 0 R
TRIM1 0 R
TRIM0 0 R
$FFC1
$FFC2 $FFCF
Unimplemented
Unimplemented
$FFFF
Read: COP Control Register (COPCTL) Write: See page 192. Reset:
LOW BYTE OF RESET VECTOR WRITING CLEARS COP COUNTER (ANY VALUE) Unaffected by reset = Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Memory 41
NON-DISCLOSURE
AGREEMENT
$FFB0 $FFBD
Unimplemented
REQUIRED
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Memory
REQUIRED
Table 2-1. Vector Addresses
Vector Priority Lowest IF15 $FFDF $FFE0 IF14 $FFE1 IF13 IF6 IF5 $FFF3 $FFF4 IF4 $FFF5 $FFF6 IF3 $FFF7 IF2 IF1 $FFFB $FFFC -- $FFFD $FFFE -- Highest $FFFF Reset vector (low) SWI vector (low) Reset vector (high) IRQ vector (low) SWI vector (high) -- $FFFA TIM Channel 0 vector (low) Not used IRQ vector (high) TIM Channel 1 vector (low) TIM Channel 0 vector (high) TIM overflow vector (low) TIM Channel 1 vector (high) -- $FFF2 Keyboard vector (low) Not used TIM overflow vector (high) ADC conversion complete vector (low) Keyboard vector (high) Vector Address $FFDE Vector ADC conversion complete vector (high)
.
NON-DISCLOSURE
42
AGREEMENT
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Memory MOTOROLA
Section 3. Random-Access Memory (RAM)
3.1 Contents
3.2 3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Introduction
This section describes the 128 bytes of random-access memory (RAM).
3.3 Functional Description
Addresses $0080-$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM locations. Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805, M146805, and M68HC05 compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Random-Access Memory (RAM) 43
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Random-Access Memory (RAM)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 44 Random-Access Memory (RAM) MOTOROLA
AGREEMENT
REQUIRED
Section 4. FLASH Memory (FLASH)
4.1 Contents
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Introduction
This section describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. * * MC68HC908QY4 and MC68HC908QT4: 4096 bytes user FLASH from $EE00-$FDFF MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1: 1536 bytes user FLASH from $F800-$FDFF
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 45
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
FLASH Memory (FLASH) 4.3 Functional Description
The FLASH memory consists of an array of 4096 or 1536 bytes with an additional 48 bytes for user vectors. The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations are facilitated through control bits in the FLASH control register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are: * * * $EE00 - $FDFF; user memory, 4096 bytes: MC68HC908QY4 and MC68HC908QT4 $F800 - $FDFF; user memory, 1536 bytes: MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1 $FFD0 - $FFFF; user interrupt vectors, 48 bytes.
AGREEMENT
REQUIRED
NOTE:
An erased bit reads as logic 1 and a programmed bit reads as logic 0. A security feature prevents viewing of the FLASH contents.(1)
NON-DISCLOSURE
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 46 FLASH Memory (FLASH) MOTOROLA
FLASH Memory (FLASH) FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 HVEN MASS ERASE PGM 3 2 1 Bit 0
HVEN -- High Voltage Enable Bit This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS -- Mass Erase Control Bit This read/write bit configures the memory for mass erase operation. 1 = Mass Erase operation selected 0 = Mass Erase operation unselected ERASE -- Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM -- Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 47
NON-DISCLOSURE
AGREEMENT
Figure 4-1. FLASH Control Register (FLCR)
REQUIRED
4.4 FLASH Control Register
FLASH Memory (FLASH) 4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the address range of the block to be erased. 4. Wait for a time, tnvs (minimum 10 s). 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum 1 ms or 4 ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh (minimum 5 s). 9. Clear the HVEN bit. 10. After time, trcv (typical 1 s), the memory can be accessed in read mode again.
NON-DISCLOSURE
AGREEMENT
REQUIRED
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. In applications that need up to 10,000 program/erase cycles, use the 4 ms page erase specification to get improved long-term reliability. Any application can use this 4 ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1 ms page erase specification to get a lower minimum erase time.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 48 FLASH Memory (FLASH) MOTOROLA
FLASH Memory (FLASH) FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory to read as logic 1: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address(1) within the FLASH memory address range. 4. Wait for a time, tnvs (minimum 10 s). 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum 4 ms). 7. Clear the ERASE and MASS bits. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). 8. Wait for a time, tnvh1 (minimum 100 s). 9. Clear the HVEN bit. 10. After time, trcv (typical 1 s), the memory can be accessed in read mode again.
NOTE:
NOTE:
4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the following step-by-step procedure to program a row of FLASH memory Figure 4-2 shows a flowchart of the programming algorithm.
NOTE:
Only bytes which are currently $FF may be programmed.
1. When in monitor mode, with security sequence failed (see 9.5 Security), write to the FLASH block protect register instead of any FLASH address.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 49
NON-DISCLOSURE
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
AGREEMENT
REQUIRED
4.6 FLASH Mass Erase Operation
FLASH Memory (FLASH)
1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH location within the address range desired. 4. Wait for a time, tnvs (minimum 10 s). 5. Set the HVEN bit. 6. Wait for a time, tpgs (minimum 5 s). 7. Write data to the FLASH address being programmed(1). 8. Wait for time, tPROG (minimum 30 s). 9. Repeat step 7 and 8 until all desired bytes within the row are programmed. 10. Clear the PGM bit(1). 11. Wait for time, tnvh (minimum 5 s). 12. Clear the HVEN bit. 13. After time, trcv (typical 1 s), the memory can be accessed in read mode again.
AGREEMENT
REQUIRED
NON-DISCLOSURE
NOTE:
The COP register at location $FFFF should not be written between steps 5-12, when the HVEN bit is set. Since this register is located at a valid FLASH address, unpredictable behavior may occur if this location is written while HVEN is set. This program sequence is repeated throughout the memory until all data is programmed.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum, see 18.14 Memory Characteristics.
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG maximum.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 50 FLASH Memory (FLASH) MOTOROLA
FLASH Memory (FLASH) FLASH Protection
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE:
In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit. When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1's), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are shown in 4.9 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 51
NON-DISCLOSURE
AGREEMENT
REQUIRED
4.8 FLASH Protection
FLASH Memory (FLASH)
REQUIRED
Algorithm for Programming a Row (32 Bytes) of FLASH Memory
1
SET PGM BIT
2 READ THE FLASH BLOCK PROTECT REGISTER
3
WRITE ANY DATA TO ANY FLASH ADDRESS WITHIN THE ROW ADDRESS RANGE DESIRED
4
WAIT FOR A TIME, tnvs
5
SET HVEN BIT
AGREEMENT
6
WAIT FOR A TIME, tpgs
7
WRITE DATA TO THE FLASH ADDRESS TO BE PROGRAMMED
8
WAIT FOR A TIME, tPROG
9
NON-DISCLOSURE
COMPLETED PROGRAMMING THIS ROW? N 10
Y
CLEAR PGM BIT
11
WAIT FOR A TIME, tnvh
NOTES: The time between each FLASH address change (step 6 to step 9), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tPROG max. This row program algorithm assumes the row/s to be programmed are initially erased.
12
CLEAR HVEN BIT
13
WAIT FOR A TIME, trcv
END OF PROGRAMMING
Figure 4-2. FLASH Programming Flowchart
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 52 FLASH Memory (FLASH) MOTOROLA
FLASH Memory (FLASH) FLASH Block Protect Register
The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting address of the protected range within the FLASH memory.
Address: $FFBE Bit 7 Read: BPR7 Write: Reset: U U U U U U U U BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 6 5 4 3 2 1 Bit 0
U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory.
Figure 4-3. FLASH Block Protect Register (FLBPR) BPR[7:0] -- FLASH Protection Register Bits [7:0] These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are logic 1s and bits [5:0] are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH memory. See Figure 4-4 and Table 4-1.
16-BIT MEMORY ADDRESS START ADDRESS OF FLASH BLOCK PROTECT 1 1 FLBPR VALUE 0 0 0 0 0 0
Figure 4-4. FLASH Block Protect Start Address
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 53
NON-DISCLOSURE
AGREEMENT
REQUIRED
4.9 FLASH Block Protect Register
FLASH Memory (FLASH)
Table 4-1. Examples of Protect Start Address
BPR[7:0] $00-$B8 $B9 (1011 1001) $BA (1011 1010) $BB (1011 1011) $BC (1011 1100) and so on... $DE (1101 1110) $DF (1101 1111) $FE (1111 1110) $FF $F780 (1111 0111 1000 0000) $F7C0 (1111 0111 1100 0000) $FF80 (1111 1111 1000 0000) FLBPR, OSCTRIM, and vectors are protected The entire FLASH memory is not protected. Start of Address of Protect Range The entire FLASH memory is protected. $EE40 (1110 1110 0100 0000) $EE80 (1110 1110 1000 0000) $EEC0 (1110 1110 1100 0000) $EF00 (1110 1111 0000 0000)
AGREEMENT
REQUIRED 4.10 Wait Mode
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode.
NON-DISCLOSURE
4.11 Stop Mode
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode
NOTE:
Standby mode is the power-saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 54 FLASH Memory (FLASH) MOTOROLA
Section 5. Configuration Register (CONFIG)
5.1 Contents
5.2 5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Introduction
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers enable or disable the following options: * * * * * * * * * Stop mode recovery time (32 x BUSCLKX4 cycles or 4096 x BUSCLKX4 cycles) STOP instruction Computer operating properly module (COP) COP reset period (COPRS): (213 -24) x BUSCLKX4 or (218 -24) x BUSCLKX4 Low-voltage inhibit (LVI) enable and trip voltage selection OSC option selection IRQ pin RST pin Auto wake-up timeout period
5.3 Functional Description
The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Configuration Register (CONFIG) 55
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Configuration Register (CONFIG)
Most of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU) it is recommended that this register be written immediately after reset. The configuration register is located at $001E and $001F, and may be read at anytime.
REQUIRED
NOTE:
The CONFIG registers are one-time writable by the user after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-1 and Figure 5-2.
Address: $001E
AGREEMENT
Bit 7 Read: Write: Reset: POR: IRQPUD 0 0 R
6 IRQEN 0 0 = Reserved
5 R 0 0
4
3
2 R 0 0
1 R 0 0
Bit 0 RSTEN U 0
OSCOPT1 OSCOPT0 0 0 U = Unaffected 0 0
Figure 5-1 Configuration Register 2 (CONFIG2) IRQPUD -- IRQ Pin Pullup Control Bit 1 = Internal pullup is disconnected 0 = Internal pullup is connected between IRQ pin and VDD IRQEN -- IRQ Pin Function Selection Bit 1 = Interrupt request function active in pin 0 = Interrupt request function inactive in pin OSCOPT1 and OSCOPT0 -- Selection Bits for Oscillator Option (0, 0) Internal oscillator (0, 1) External oscillator (1, 0) External RC oscillator (1, 1) External XTAL oscillator RSTEN -- RST Pin Function Selection 1 = Reset function active in pin 0 = Reset function inactive in pin
NON-DISCLOSURE
NOTE:
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 56 Configuration Register (CONFIG) MOTOROLA
Configuration Register (CONFIG) Functional Description
Bit 7 Read: COPRS Write: Reset: POR: 0 0 R
6
5
4
3
2 SSREC 0 0
1 STOP 0 0
Bit 0 COPD 0 0
LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 = Reserved 0 0 0 0 U = Unaffected U 0
Figure 5-2 Configuration Register 1 (CONFIG1) COPRS (Out of STOP Mode) -- COP Reset Period Selection Bit 1 = COP reset short cycle = (213 - 24) x BUSCLKX4 0 = COP reset long cycle = (218 - 24) x BUSCLKX4 COPRS (In STOP Mode) -- Auto Wake-up Period Selection Bit 1 = Auto wake-up short cycle = (29) x INTRCOSC 0 = Auto wake-up long cycle = (214) x INTRCOSC LVISTOP -- LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRSTD -- LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD -- LVI Power Disable Bit LVIPWRD disables the LVI module. 1 = LVI module power disabled 0 = LVI module power enabled
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Configuration Register (CONFIG) 57
NON-DISCLOSURE
AGREEMENT
REQUIRED
Address: $001F
Configuration Register (CONFIG)
LVI5OR3 -- LVI 5-V or 3-V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI should match the operating VDD for the LVI's voltage trip points for each of the modes. 1 = LVI operates in 5-V mode 0 = LVI operates in 3-V mode
REQUIRED
NOTE:
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected. SSREC -- Short Stop Recovery Bit
AGREEMENT
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay. 1 = Stop mode recovery after 32 BUSCLKX4 cycles 0 = Stop mode recovery after 4096 BUSCLKX4 cycles
NOTE:
Exiting stop mode by an LVI reset will result in the long stop recovery. When using the LVI during normal operation but disabling during stop mode, the LVI will have an enable time of tEN. The system stabilization time for power-on reset and long stop recovery (both 4096 BUSCLKX4 cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI's turn on time to avoid a period in startup where the LVI is not protecting the MCU. STOP -- STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD -- COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled
NON-DISCLOSURE
58
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Configuration Register (CONFIG) MOTOROLA
Section 6. Central Processor Unit (CPU)
6.1 Contents
6.2 6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 59
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Central Processor Unit (CPU) 6.3 Features
Features of the CPU include: * * * * * * Object code fully upward-compatible with M68HC05 Family 16-bit stack pointer with stack manipulation instructions 16-bit index register with x-register manipulation instructions 8-MHz CPU internal bus frequency 64-Kbyte program/data memory space 16 addressing modes Memory-to-memory data moves without using accumulator Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions Enhanced binary-coded decimal (BCD) data handling Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes Low-power stop and wait modes
AGREEMENT
REQUIRED
* * * * *
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.
NON-DISCLOSURE
60
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Central Processor Unit (CPU) MOTOROLA
Central Processor Unit (CPU) CPU Registers
7 15 H 15 15 X
0 ACCUMULATOR (A) 0 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 0 PROGRAM COUNTER (PC)
7 0 V11HINZC
CONDITION CODE REGISTER (CCR)
Figure 6-1. CPU Registers
6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7 Read: Write: Reset: Unaffected by reset 6 5 4 3 2 1 Bit 0
Figure 6-2. Accumulator (A)
6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 61
NON-DISCLOSURE
AGREEMENT
CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO'S COMPLEMENT OVERFLOW FLAG
REQUIRED
Central Processor Unit (CPU)
The index register can serve also as a temporary data storage location.
Bit 15 Read: Write: Reset: 0 0 0 0 0 0 0 0 X X X X X X X X 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
REQUIRED
X = Indeterminate
Figure 6-3. Index Register (H:X)
AGREEMENT
6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Bit 15 Read: Write: Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
NON-DISCLOSURE
Figure 6-4. Stack Pointer (SP)
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 62 Central Processor Unit (CPU) MOTOROLA
Central Processor Unit (CPU) CPU Registers
The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 15 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
Figure 6-5. Program Counter (PC)
6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.
Bit 7 Read: V Write: Reset: X 1 1 X 1 X X X 1 1 H I N Z C 6 5 4 3 2 1 Bit 0
X = Indeterminate
Figure 6-6. Condition Code Register (CCR)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 63
NON-DISCLOSURE
AGREEMENT
REQUIRED
6.4.4 Program Counter
Central Processor Unit (CPU)
V -- Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H -- Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I -- Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled
NON-DISCLOSURE
AGREEMENT
REQUIRED
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 64 Central Processor Unit (CPU) MOTOROLA
Central Processor Unit (CPU) Arithmetic/Logic Unit (ALU)
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z -- Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result C -- Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions -- such as bit test and branch, shift, and rotate -- also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7
6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 65
NON-DISCLOSURE
AGREEMENT
REQUIRED
N -- Negative flag
Central Processor Unit (CPU)
6.6.1 Wait Mode The WAIT instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
REQUIRED
*
6.6.2 Stop Mode The STOP instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
AGREEMENT
*
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
6.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
NON-DISCLOSURE
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 66 Central Processor Unit (CPU) MOTOROLA
Central Processor Unit (CPU) Instruction Set Summary
Table 6-1 provides a summary of the M68HC08 instruction set. Table 6-1. Instruction Set Summary (Sheet 1 of 7)
Opcode Source Form
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP AIS #opr AIX #opr AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCC rel
Operation
Description
VH I NZC
Add with Carry
A (A) + (M) + (C)
ff ee ff ii dd hh ll ee ff ff ff ee ff ii ii ii dd hh ll ee ff ff ff ee ff
Add without Carry
A (A) + (M)
IMM DIR EXT - IX2 IX1 IX SP1 SP2 - - - - - - IMM - - - - - - IMM IMM DIR EXT IX2 0 - - - IX1 IX SP1 SP2 DIR INH - - INH IX1 IX SP1 DIR INH - - INH IX1 IX SP1 - - - - - - REL DIR DIR DIR DIR ------ DIR DIR DIR DIR - - - - - - REL - - - - - - REL (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7)
AB BB CB DB EB FB 9EEB 9EDB A7 AF A4 B4 C4 D4 E4 F4 9EE4 9ED4
2 3 4 4 3 2 4 5 2 2 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 3 4 4 4 4 4 4 4 4 3 3
Add Immediate Value (Signed) to SP Add Immediate Value (Signed) to H:X
SP (SP) + (16 M) H:X (H:X) + (16 M)
Logical AND
A (A) & (M)
Arithmetic Shift Left (Same as LSL)
C b7 b0
0
38 dd 48 58 68 ff 78 9E68 ff 37 dd 47 57 67 ff 77 9E67 ff 24 11 13 15 17 19 1B 1D 1F 25 27 rr dd dd dd dd dd dd dd dd rr rr
Arithmetic Shift Right
b7 b0
C
Branch if Carry Bit Clear
PC (PC) + 2 + rel ? (C) = 0
BCLR n, opr
Clear Bit n in M
Mn 0
BCS rel BEQ rel
Branch if Carry Bit Set (Same as BLO) Branch if Equal
PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (Z) = 1
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 67
NON-DISCLOSURE
AGREEMENT
IMM DIR EXT - IX2 IX1 IX SP1 SP2
A9 B9 C9 D9 E9 F9 9EE9 9ED9
ii dd hh ll ee ff ff
Cycles
2 3 4 4 3 2 4 5
Effect on CCR
REQUIRED
6.8 Instruction Set Summary
Operand
Address Mode
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 2 of 7)
Opcode Source Form
BGE opr BGT opr BHCC rel BHCS rel BHI rel
REQUIRED
Operation
Branch if Greater Than or Equal To (Signed Operands) Branch if Greater Than (Signed Operands) Branch if Half Carry Bit Clear Branch if Half Carry Bit Set Branch if Higher Branch if Higher or Same (Same as BCC) Branch if IRQ Pin High Branch if IRQ Pin Low
Description
PC (PC) + 2 + rel ? (N V) = 0
VH I NZC
- - - - - - REL
90 92 28 29 22 24 2F 2E A5 B5 C5 D5 E5 F5 9EE5 9ED5 93 25 23 91 2C 2B 2D 26 2A 20 (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 01 03 05 07 09 0B 0D 0F 21
rr rr rr rr rr rr rr rr ii dd hh ll ee ff ff ff ee ff rr rr rr rr rr rr rr rr rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr rr
PC (PC) + 2 + rel ? (Z) | (N V) = 0 - - - - - - REL PC (PC) + 2 + rel ? (H) = 0 PC (PC) + 2 + rel ? (H) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 0 PC (PC) + 2 + rel ? (C) = 0 PC (PC) + 2 + rel ? IRQ = 1 PC (PC) + 2 + rel ? IRQ = 0 - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL IMM DIR EXT IX2 0 - - - IX1 IX SP1 SP2
3 3 3 3 3 2 3 4 4 3 2 4 5 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 3
AGREEMENT
BHS rel BIH rel BIL rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP BLE opr BLO rel BLS rel BLT opr
Bit Test
(A) & (M)
Branch if Less Than or Equal To (Signed Operands) Branch if Lower (Same as BCS) Branch if Lower or Same Branch if Less Than (Signed Operands) Branch if Interrupt Mask Clear Branch if Minus Branch if Interrupt Mask Set Branch if Not Equal Branch if Plus Branch Always
PC (PC) + 2 + rel ? (Z) | (N V) = 1 - - - - - - REL PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 1 PC (PC) + 2 + rel ? (N V) =1 PC (PC) + 2 + rel ? (I) = 0 PC (PC) + 2 + rel ? (N) = 1 PC (PC) + 2 + rel ? (I) = 1 PC (PC) + 2 + rel ? (Z) = 0 PC (PC) + 2 + rel ? (N) = 0 PC (PC) + 2 + rel - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL DIR DIR DIR DIR ----- DIR DIR DIR DIR - - - - - - REL
NON-DISCLOSURE
BMC rel BMI rel BMS rel BNE rel BPL rel BRA rel
BRCLR n,opr,rel Branch if Bit n in M Clear
PC (PC) + 3 + rel ? (Mn) = 0
BRN rel
Branch Never
PC (PC) + 2
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 68 Central Processor Unit (CPU) MOTOROLA
Cycles
3 3 3
Effect on CCR
Operand
Address Mode
Central Processor Unit (CPU) Instruction Set Summary
Opcode
Source Form
Operation
Description
VH I NZC
BRSET n,opr,rel Branch if Bit n in M Set
PC (PC) + 3 + rel ? (Mn) = 1
DIR DIR DIR - - - - - DIR DIR DIR DIR DIR DIR DIR DIR - - - - - - DIR DIR DIR DIR DIR
(b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7)
00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd dd dd dd dd dd dd dd
Cycles
5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 5 4 4 5 4 6 1 2 3 1 1 1 3 2 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 3 4
Effect on CCR
BSET n,opr
Set Bit n in M
Mn 1
BSR rel
Branch to Subroutine
PC (PC) + 2; push (PCL) SP (SP) - 1; push (PCH) SP (SP) - 1 PC (PC) + rel PC (PC) PC (PC) PC (PC) PC (PC) PC (PC) PC (PC) + 3 + rel ? (A) + 3 + rel ? (A) + 3 + rel ? (X) + 3 + rel ? (A) + 2 + rel ? (A) + 4 + rel ? (A) C0 I0 M $00 A $00 X $00 H $00 M $00 M $00 M $00 - (M) - (M) - (M) - (M) - (M) - (M) = $00 = $00 = $00 = $00 = $00 = $00
- - - - - - REL
AD
rr
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel Compare and Branch if Equal CBEQ X+,rel CBEQ opr,SP,rel CLC CLI CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP COM opr COMA COMX COM opr,X COM ,X COM opr,SP CPHX #opr CPHX opr Clear Carry Bit Clear Interrupt Mask
DIR IMM IMM - - - - - - IX1+ IX+ SP1 - - - - - 0 INH - - 0 - - - INH DIR INH INH 0 - - 0 1 - INH IX1 IX SP1 IMM DIR EXT - - IX2 IX1 IX SP1 SP2 DIR INH INH 0--1 IX1 IX SP1
31 41 51 61 71 9E61 98 9A
dd rr ii rr ii rr ff rr rr ff rr
Clear
Compare A with M
(A) - (M)
A1 B1 C1 D1 E1 F1 9EE1 9ED1
ii dd hh ll ee ff ff ff ee ff
Complement (One's Complement)
M A X M M M
(M) = $FF - (M) (A) = $FF - (M) (X) = $FF - (M) (M) = $FF - (M) (M) = $FF - (M) (M) = $FF - (M)
33 dd 43 53 63 ff 73 9E63 ff 65 75 ii ii+1 dd
Compare H:X with M
(H:X) - (M:M + 1)
- - IMM DIR
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 69
NON-DISCLOSURE
3F dd 4F 5F 8C 6F ff 7F 9E6F ff
AGREEMENT
REQUIRED
Table 6-1. Instruction Set Summary (Sheet 3 of 7)
Operand Address Mode
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 4 of 7)
Opcode Source Form
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP DAA
REQUIRED
Operation
Description
VH I NZC
Compare X with M
(X) - (M)
IMM DIR EXT - - IX2 IX1 IX SP1 SP2 U - - INH
A3 B3 C3 D3 E3 F3 9EE3 9ED3 72 3B 4B 5B 6B 7B 9E6B
ii dd hh ll ee ff ff ff ee ff
Decimal Adjust A
(A) 10
AGREEMENT
DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP DIV EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP JMP JMP JMP JMP opr opr opr,X opr,X ,X
A (A) - 1 or M (M) - 1 or X (X) - 1 DIR PC (PC) + 3 + rel ? (result) 0 INH PC (PC) + 2 + rel ? (result) 0 - - - - - - INH PC (PC) + 2 + rel ? (result) 0 IX1 PC (PC) + 3 + rel ? (result) 0 IX PC (PC) + 2 + rel ? (result) 0 SP1 PC (PC) + 4 + rel ? (result) 0 M (M) - 1 A (A) - 1 X (X) - 1 M (M) - 1 M (M) - 1 M (M) - 1 A (H:A)/(X) H Remainder DIR INH - - - INH IX1 IX SP1 - - - - INH IMM DIR EXT IX2 0--- IX1 IX SP1 SP2 DIR INH - - - INH IX1 IX SP1 DIR EXT - - - - - - IX2 IX1 IX DIR EXT - - - - - - IX2 IX1 IX IMM DIR EXT IX2 0 - - - IX1 IX SP1 SP2
dd rr rr rr ff rr rr ff rr
Decrement
3A dd 4A 5A 6A ff 7A 9E6A ff 52 A8 B8 C8 D8 E8 F8 9EE8 9ED8 ii dd hh ll ee ff ff ff ee ff
Divide
Exclusive OR M with A
A (A M)
NON-DISCLOSURE
Increment
M (M) + 1 A (A) + 1 X (X) + 1 M (M) + 1 M (M) + 1 M (M) + 1
3C dd 4C 5C 6C ff 7C 9E6C ff BC CC DC EC FC BD CD DD ED FD A6 B6 C6 D6 E6 F6 9EE6 9ED6 dd hh ll ee ff ff dd hh ll ee ff ff ii dd hh ll ee ff ff ff ee ff
Jump
PC Jump Address
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA LDA LDA LDA LDA LDA LDA LDA #opr opr opr opr,X opr,X ,X opr,SP opr,SP
Jump to Subroutine
PC (PC) + n (n = 1, 2, or 3) Push (PCL); SP (SP) - 1 Push (PCH); SP (SP) - 1 PC Unconditional Address
Load A from M
A (M)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 70 Central Processor Unit (CPU) MOTOROLA
Cycles
2 3 4 4 3 2 4 5 2 5 3 3 5 4 6 4 1 1 4 3 5 7 2 3 4 4 3 2 4 5 4 1 1 4 3 5 2 3 4 3 2 4 5 6 5 4 2 3 4 4 3 2 4 5
Effect on CCR
Operand
Address Mode
Central Processor Unit (CPU) Instruction Set Summary
Opcode
Source Form
LDHX #opr LDHX opr LDX LDX LDX LDX LDX LDX LDX LDX #opr opr opr opr,X opr,X ,X opr,SP opr,SP
Operation
Description
H:X (M:M + 1)
VH I NZC
Load H:X from M
0 - - - IMM DIR IMM DIR EXT 0 - - - IX2 IX1 IX SP1 SP2 DIR INH - - INH IX1 IX SP1 DIR INH - - 0 INH IX1 IX SP1 DD 0 - - - DIX+ IMD IX+D - 0 - - - 0 INH DIR INH - - INH IX1 IX SP1 - - - - - - INH - - - - - - INH IMM DIR EXT IX2 0--- IX1 IX SP1 SP2 - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH
45 55 AE BE CE DE EE FE 9EEE 9EDE
ii jj dd ii dd hh ll ee ff ff ff ee ff
Load X from M
X (M)
Logical Shift Left (Same as ASL)
C b7 b0
0
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP MOV MOV MOV MOV MUL NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP NOP NSA ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP PSHA PSHH PSHX PULA PULH PULX opr,opr opr,X+ #opr,opr X+,opr
Logical Shift Right
0 b7 b0
C
34 dd 44 54 64 ff 74 9E64 ff 4E 5E 6E 7E 42 30 dd 40 50 60 ff 70 9E60 ff 9D 62 AA BA CA DA EA FA 9EEA 9EDA 87 8B 89 86 8A 88 ii dd hh ll ee ff ff ff ee ff dd dd dd ii dd dd
4 1 1 4 3 5 5 4 4 4 5 4 1 1 4 3 5 1 3 2 3 4 4 3 2 4 5 2 2 2 2 2 2
Move
(M)Destination (M)Source H:X (H:X) + 1 (IX+D, DIX+) X:A (X) x (A) M -(M) = $00 - (M) A -(A) = $00 - (A) X -(X) = $00 - (X) M -(M) = $00 - (M) M -(M) = $00 - (M) None A (A[3:0]:A[7:4])
Unsigned multiply
No Operation Nibble Swap A
Inclusive OR A and M
A (A) | (M)
Push A onto Stack Push H onto Stack Push X onto Stack Pull A from Stack Pull H from Stack Pull X from Stack
Push (A); SP (SP) - 1 Push (H); SP (SP) - 1 Push (X); SP (SP) - 1 SP (SP + 1); Pull (A) SP (SP + 1); Pull (H) SP (SP + 1); Pull (X)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 71
NON-DISCLOSURE
Negate (Two's Complement)
AGREEMENT
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP
38 dd 48 58 68 ff 78 9E68 ff
Cycles
3 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5
Effect on CCR
REQUIRED
Table 6-1. Instruction Set Summary (Sheet 5 of 7)
Operand Address Mode
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 6 of 7)
Opcode Source Form
ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP RSP
REQUIRED
Operation
Description
VH I NZC
Rotate Left through Carry
C b7 b0
DIR INH - - INH IX1 IX SP1 DIR INH - - INH IX1 IX SP1 - - - - - - INH
39 dd 49 59 69 ff 79 9E69 ff 36 dd 46 56 66 ff 76 9E66 ff 9C
Rotate Right through Carry
b7 b0
C
AGREEMENT
Reset Stack Pointer
SP $FF SP (SP) + 1; Pull (CCR) SP (SP) + 1; Pull (A) SP (SP) + 1; Pull (X) SP (SP) + 1; Pull (PCH) SP (SP) + 1; Pull (PCL) SP SP + 1; Pull (PCH) SP SP + 1; Pull (PCL)
RTI
Return from Interrupt
INH
80
RTS SBC SBC SBC SBC SBC SBC SBC SBC SEC #opr opr opr opr,X opr,X ,X opr,SP opr,SP
Return from Subroutine
- - - - - - INH IMM DIR EXT - - IX2 IX1 IX SP1 SP2 - - - - - 1 INH - - 1 - - - INH DIR EXT IX2 0 - - - IX1 IX SP1 SP2 0 - - - DIR - - 0 - - - INH DIR EXT IX2 0 - - - IX1 IX SP1 SP2 IMM DIR EXT - - IX2 IX1 IX SP1 SP2
81 A2 B2 C2 D2 E2 F2 9EE2 9ED2 99 9B B7 C7 D7 E7 F7 9EE7 9ED7 35 8E BF CF DF EF FF 9EEF 9EDF A0 B0 C0 D0 E0 F0 9EE0 9ED0 dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff dd hh ll ee ff ff ff ee ff dd ii dd hh ll ee ff ff ff ee ff
Subtract with Carry
A (A) - (M) - (C)
Set Carry Bit Set Interrupt Mask
C1 I1
NON-DISCLOSURE
SEI STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP STHX opr STOP STX STX STX STX STX STX STX opr opr opr,X opr,X ,X opr,SP opr,SP
Store A in M
M (A)
Store H:X in M Enable IRQ Pin; Stop Oscillator
(M:M + 1) (H:X) I 0; Stop Oscillator
Store X in M
M (X)
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP
Subtract
A (A) - (M)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 72 Central Processor Unit (CPU) MOTOROLA
Cycles
4 1 1 4 3 5 4 1 1 4 3 5 1 7 4 2 3 4 4 3 2 4 5 1 2 3 4 4 3 2 4 5 4 1 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5
Effect on CCR
Operand
Address Mode
Central Processor Unit (CPU) Opcode Map
Opcode
Source Form
Operation
Description
PC (PC) + 1; Push (PCL) SP (SP) - 1; Push (PCH) SP (SP) - 1; Push (X) SP (SP) - 1; Push (A) SP (SP) - 1; Push (CCR) SP (SP) - 1; I 1 PCH Interrupt Vector High Byte PCL Interrupt Vector Low Byte CCR (A) X (A) A (CCR)
VH I NZC
SWI
Software Interrupt
- - 1 - - - INH
83
TAP TAX TPA TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP TSX TXA TXS A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N
Transfer A to CCR Transfer A to X Transfer CCR to A
INH
- - - - - - INH - - - - - - INH DIR INH INH 0--- IX1 IX SP1 - - - - - - INH - - - - - - INH - - - - - - INH
84 97 85 3D dd 4D 5D 6D ff 7D 9E6D ff 95 9F 94
Cycles
9 2 1 1 3 1 1 3 2 4 2 1 2
Effect on CCR
Test for Negative or Zero
(A) - $00 or (X) - $00 or (M) - $00
Transfer SP to H:X Transfer X to A Transfer H:X to SP
H:X (SP) + 1 A (X) (SP) (H:X) - 1 n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & |
() -( ) # ? :
--
6.9 Opcode Map
The opcode map is provided in Table 6-2.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 73
NON-DISCLOSURE
Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit
Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two's complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected
AGREEMENT
REQUIRED
Table 6-1. Instruction Set Summary (Sheet 7 of 7)
Operand Address Mode
Central Processor Unit (CPU)
74 Central Processor Unit (CPU) MOTOROLA
Table 6-2. Opcode Map
Bit Manipulation DIR DIR
MSB LSB
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1
Branch REL 2 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL
DIR 3
INH 4
Read-Modify-Write INH IX1 5 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 6 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1
SP1 9E6
IX 7
Control INH INH 8 9
IMM A 2 SUB IMM 2 CMP IMM 2 SBC IMM 2 CPX IMM 2 AND IMM 2 BIT IMM 2 LDA IMM 2 AIS IMM 2 EOR IMM 2 ADC IMM 2 ORA IMM 2 ADD IMM
DIR B
EXT C 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 4 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 5 JSR EXT 4 LDX EXT 4 STX EXT
Register/Memory IX2 SP2 D 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 9ED 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2
IX1 E 3 SUB IX1 3 CMP IX1 3 SBC IX1 3 CPX IX1 3 AND IX1 3 BIT IX1 3 LDA IX1 3 STA IX1 3 EOR IX1 3 ADC IX1 3 ORA IX1 3 ADD IX1 3 JMP IX1 5 JSR IX1 3 LDX IX1 3 STX IX1
SP1 9EE 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1
IX F 2 SUB IX 2 CMP IX 2 SBC IX 2 CPX IX 2 AND IX 2 BIT IX 2 LDA IX 2 STA IX 2 EOR IX 2 ADC IX 2 ORA IX 2 ADD IX 2 JMP IX 4 JSR IX 2 LDX IX 2 STX IX
0 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR
1 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR
0 1 2 3 4 5 6 7 8 9 A B C D E F
1 4 NEGA NEG 2 DIR 1 INH 4 5 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 1 4 COMA COM 2 DIR 1 INH 1 4 LSRA LSR 2 DIR 1 INH 3 4 LDHX STHX 2 DIR 3 IMM 1 4 RORA ROR 2 DIR 1 INH 1 4 ASRA ASR 2 DIR 1 INH 1 4 LSLA LSL 2 DIR 1 INH 1 4 ROLA ROL 2 DIR 1 INH 1 4 DECA DEC 2 DIR 1 INH 3 5 DBNZ DBNZA 3 DIR 2 INH 1 4 INCA INC 2 DIR 1 INH 1 3 TSTA TST 2 DIR 1 INH 5 MOV 3 DD 1 3 CLRA CLR 2 DIR 1 INH
3 5 NEG NEG 3 SP1 1 IX 4 6 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 3 5 COM COM 3 SP1 1 IX 3 5 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 3 5 ROR ROR 3 SP1 1 IX 3 5 ASR ASR 3 SP1 1 IX 3 5 LSL LSL 3 SP1 1 IX 3 5 ROL ROL 3 SP1 1 IX 3 5 DEC DEC 3 SP1 1 IX 4 6 DBNZ DBNZ 4 SP1 2 IX 3 5 INC INC 3 SP1 1 IX 2 4 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 2 4 CLR CLR 3 SP1 1 IX
3 7 BGE RTI 1 INH 2 REL 3 4 BLT RTS 1 INH 2 REL 3 BGT 2 REL 3 9 BLE SWI 1 INH 2 REL 2 2 TXS TAP 1 INH 1 INH 2 1 TSX TPA 1 INH 1 INH 2 PULA 1 INH 1 2 TAX PSHA 1 INH 1 INH 1 2 CLC PULX 1 INH 1 INH 1 2 SEC PSHX 1 INH 1 INH 2 2 CLI PULH 1 INH 1 INH 2 2 SEI PSHH 1 INH 1 INH 1 1 RSP CLRH 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 TXA WAIT 1 INH 1 INH
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2
3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 JSR BSR REL 2 DIR 3 2 LDX LDX IMM 2 DIR 3 2 STX AIX IMM 2 DIR
MSB LSB
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 5 LDX 4 SP2 2 5 STX 4 SP2 2
1 4 LDX 3 SP1 1 4 STX 3 SP1 1
Inherent REL Relative Immediate IX Indexed, No Offset Direct IX1 Indexed, 8-Bit Offset Extended IX2 Indexed, 16-Bit Offset Direct-Direct IMD Immediate-Direct Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions
INH IMM DIR EXT DD IX+D
SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment
0
High Byte of Opcode in Hexadecimal
Low Byte of Opcode in Hexadecimal
0
Cycles 5 BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode
NON-DISCLOSURE
AGREEMENT
REQUIRED
Section 7. System Integration Module (SIM)
7.1 Contents
7.2 7.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79
7.4 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79 7.4.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80 7.5 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81 7.5.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.5.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 83 7.5.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84 7.6 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85 7.6.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85 7.6.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85 7.7 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.7.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.7.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.7.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 75
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
System Integration Module (SIM)
7.7.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93
REQUIRED
7.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.9 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.9.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
AGREEMENT
7.2 Introduction
This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: * Bus clock generation and control for CPU and peripherals - Stop/wait/reset/break entry and recovery - Internal clock control * * Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout Interrupt control: - Acknowledge timing - Arbitration control timing - Vector address generation * * CPU enable/disable timing Modular architecture expandable to 128 interrupt sources
NON-DISCLOSURE
76
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Introduction
MODULE WAIT STOP/WAIT CONTROL CPU STOP (FROM CPU) CPU WAIT (FROM CPU) SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK
BUSCLKX4 (FROM OSCILLATOR) BUSCLKX2 (FROM OSCILLATOR) /2 VDD CLOCK CONTROL CLOCK GENERATORS INTERNAL CLOCKS
INTERNAL PULL-UP
RESET PIN LOGIC
POR CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER MASTER RESET CONTROL
ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP TIMEOUT (FROM COP MODULE) LVI RESET (FROM LVI MODULE) FORCED MON MODE ENTRY (FROM MENRST MODULE)
RESET
CPU INTERFACE
Figure 7-1. SIM Block Diagram Table 7-1. Signal Name Conventions
Signal Name BUSCLKX4 BUSCLKX2 Address bus Data bus PORRST IRST R/W Description Buffered clock from the internal, RC or XTAL oscillator circuit. The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks (bus clock = BUSCLKX4 / 4). Internal address bus Internal data bus Signal from the power-on reset module to the SIM Internal reset signal Read/write signal
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 77
NON-DISCLOSURE
INTERRUPT CONTROL AND PRIORITY DECODE
INTERRUPT SOURCES
AGREEMENT
REQUIRED
MODULE STOP
System Integration Module (SIM)
REQUIRED
Addr.
Register Name Read: Break Status Register (BSR) Write: See page 99. Reset:
Bit 7 R 0
6 R 0
5 R 0
4 R 0
3 R 0
2 R
1 SBSW
Bit 0 R
$FE00
Note 1 0 0 0
1. Writing a logic 0 clears SBSW. Read: SIM Reset Status Register (SRSR) Write: See page 96. POR: Reserved POR PIN COP ILOP ILAD MODRST LVI 0
$FE01
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
AGREEMENT
$FE02
$FE03
Read: Break Flag Control Register (BFCR) Write: See page 98. Reset: Read: Interrupt Status Register 1 (INT1) Write: See page 91. Reset: Read: Interrupt Status Register 2 (INT2) Write: See page 91. Reset: Read: Interrupt Status Register 3 (INT3) Write: See page 92. Reset:
BCFE 0 0 R 0 IF14 R 0 0 R 0
R
R
R
R
R
R
R
IF5 R 0 0 R 0 0 R 0
IF4 R 0 0 R 0 0 R 0
IF3 R 0 0 R 0 0 R 0
0 R 0 0 R 0 0 R 0 R
IF1 R 0 0 R 0 0 R 0 = Reserved
0 R 0 0 R 0 0 R 0
0 R 0 0 R 0 IF15 R 0
$FE04
NON-DISCLOSURE
$FE05
$FE06
= Unimplemented
Figure 7-2. SIM I/O Register Summary
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 78 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) RST and IRQ Pins Initialization
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be activated by programing CONFIG2 accordingly. Refer to Section 5. Configuration Register (CONFIG).
7.4 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 7-3.
FROM OSCILLATOR FROM OSCILLATOR
BUSCLKX4 BUSCLKX2
SIM COUNTER
/2
BUS CLOCK GENERATORS
SIM
Figure 7-3. SIM Clock Signals
7.4.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.
7.4.2 Clock Start-Up from POR When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the time out.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 79
NON-DISCLOSURE
AGREEMENT
REQUIRED
7.3 RST and IRQ Pins Initialization
System Integration Module (SIM)
7.4.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows BUSCLKX4 to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is selectable as 4096 or 32 BUSCLKX4 cycles. See 7.8.2 Stop Mode. In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
AGREEMENT
REQUIRED
7.5 Reset and System Initialization
The MCU has these reset sources: * * * * * * Power-on reset module (POR) External reset pin (RST) Computer operating properly module (COP) Low-voltage inhibit module (LVI) Illegal opcode Illegal address
NON-DISCLOSURE
All of these resets produce the vector $FFFE-FFFF ($FEFE-FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.6 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See 7.9 SIM Registers.
7.5.1 External Pin Reset The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 80 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Reset and System Initialization
Table 7-2. PIN Bit Set Timing
Reset Type POR All others Number of Cycles Required to Set PIN 4163 (4096 + 64 + 3) 67 (64 + 3)
RST ADDRESS BUS PC VECT H VECT L
Figure 7-4. External Reset Timing
7.5.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP time out, LVI, or POR (see Figure 7-6).
IRST
RST
RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES
BUSCLKX4 ADDRESS BUS
VECTOR HIGH
Figure 7-5. Internal Reset Timing
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 81
NON-DISCLOSURE
AGREEMENT
BUSCLKX2
REQUIRED
minimum of 67 BUSCLKX4 cycles, assuming that the POR was not the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing.
System Integration Module (SIM)
REQUIRED
ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST POR LVI INTERNAL RESET
Figure 7-6. Sources of Internal Reset
NOTE:
For POR resets, the SIM cycles through 4096 BUSCLKX4 cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-5. The COP reset is asynchronous to the bus clock. The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.
AGREEMENT
7.5.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power on, the following events occur: * * * * * * A POR pulse is generated. The internal reset signal is asserted. The SIM enables the oscillator to drive BUSCLKX4. Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow stabilization of the oscillator. The RST pin is driven low during the oscillator stabilization time. The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared.
NON-DISCLOSURE
See Figure 7-7.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 82 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Reset and System Initialization
OSC1
PORRST 4096 CYCLES BUSCLKX4 32 CYCLES 32 CYCLES
BUSCLKX2
RST ADDRESS BUS $FFFE $FFFF
Figure 7-7. POR Recovery 7.5.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12-5 of the SIM counter. The SIM counter output, which occurs at least every (212 - 24) BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time out. The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 83
NON-DISCLOSURE
AGREEMENT
REQUIRED
System Integration Module (SIM)
7.5.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.5.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.5.2.5 Low-Voltage Inhibit (LVI) Reset The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTrip. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the (RST) pin for all internal reset sources.
NON-DISCLOSURE
84
AGREEMENT
REQUIRED
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) SIM Counter
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of BUSCLKX4.
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine.
7.6.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1).
7.6.3 SIM Counter and Reset States External reset has no effect on the SIM counter (see 7.8.2 Stop Mode for details.) The SIM counter is free-running after all reset states. See 7.5.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 85
NON-DISCLOSURE
AGREEMENT
7.6.1 SIM Counter During Power-On Reset
REQUIRED
7.6 SIM Counter
System Integration Module (SIM) 7.7 Exception Control
Normal sequential program execution can be changed in three different ways: 1. Interrupts a. Maskable hardware CPU interrupts b. Non-maskable software interrupt instruction (SWI) 2. Reset 3. Break interrupts
AGREEMENT
REQUIRED
7.7.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 7-8 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-9 shows interrupt entry timing. Figure 7-10 shows interrupt recovery timing.
NON-DISCLOSURE
86
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Exception Control
FROM RESET
BREAK INTERRUPT? I BIT SET? NO
YES
YES
I BIT SET?
NO
IRQ INTERRUPT? NO
YES
TIMER INTERRUPT? NO
YES
STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR
(AS MANY INTERRUPTS AS EXIST ON CHIP)
FETCH NEXT INSTRUCTION
SWI INSTRUCTION? NO
YES
RTI INSTRUCTION? NO
YES
UNSTACK CPU REGISTERS
EXECUTE INSTRUCTION
Figure 7-8. Interrupt Processing
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 87
NON-DISCLOSURE
AGREEMENT
REQUIRED
System Integration Module (SIM)
REQUIRED
MODULE INTERRUPT I BIT
ADDRESS BUS
DUMMY
SP
SP - 1
SP - 2
SP - 3
SP - 4
VECT H
VECT L
START ADDR
DATA BUS
DUMMY
PC - 1[7:0] PC - 1[15:8]
X
A
CCR
V DATA H
V DATA L
OPCODE
R/W
Figure 7-9. Interrupt Entry
AGREEMENT
MODULE INTERRUPT I BIT
ADDRESS BUS
SP - 4
SP - 3
SP - 2
SP - 1
SP
PC
PC + 1
DATA BUS
CCR
A
X
PC - 1[7:0] PC - 1[15:8] OPCODE
OPERAND
R/W
Figure 7-10. Interrupt Recovery 7.7.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 88 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Exception Control
LDA #$FF
BACKGROUND ROUTINE
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
INT2
INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 7-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
7.7.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does not push PC - 1, as a hardware interrupt does.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 89
NON-DISCLOSURE
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.
AGREEMENT
PSHH
REQUIRED
CLI
System Integration Module (SIM)
7.7.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 7-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 7-3. Interrupt Sources
Priority Highest Reset SWI instruction IRQ pin Timer channel 0 interrupt Timer channel 1 interrupt Timer overflow interrupt Keyboard interrupt Lowest ADC conversion complete interrupt Source Flag -- -- IRQF1 CH0F CH1F TOF KEYF COCO Mask(1) -- -- IMASK1 CH0IE CH1IE TOIE IMASKK AIEN INT Register Flag -- -- IF1 IF3 IF4 IF5 IF14 IF15 Vector Address $FFFE-$FFFF $FFFC-$FFFD $FFFA-$FFFB $FFF6-$FFF7 $FFF4-$FFF5 $FFF2-$FFF3 $FFDE-$FFDF $FFE0-$FFE1
AGREEMENT
REQUIRED
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 90 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Exception Control
Address: $FE04 Bit 7 Read: Write: Reset: 0 R 0 R 6 IF5 R 0 = Reserved 5 IF4 R 0 4 IF3 R 0 3 0 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
Figure 7-12. Interrupt Status Register 1 (INT1) IF1 and IF3-IF5 -- Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0, 1, 3, and 7 -- Always read 0 7.7.2.2 Interrupt Status Register 2
Address: $FE05 Bit 7 Read: Write: Reset: IF14 R 0 R 6 0 R 0 = Reserved 5 0 R 0 4 0 R 0 3 0 R 0 2 0 R 0 1 0 R 0 Bit 0 0 R 0
Figure 7-13. Interrupt Status Register 2 (INT2) IF14 -- Interrupt Flags This flag indicates the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0-6 -- Always read 0
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 91
NON-DISCLOSURE
AGREEMENT
REQUIRED
7.7.2.1 Interrupt Status Register 1
System Integration Module (SIM)
7.7.2.3 Interrupt Status Register 3
Address: $FE06 Bit 7 Read: Write: Reset: 0 R 0 R 6 0 R 0 = Reserved 5 0 R 0 4 0 R 0 3 0 R 0 2 0 R 0 1 0 R 0 Bit 0 IF15 R 0
REQUIRED
Figure 7-14. Interrupt Status Register 3 (INT3) IF15 -- Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 1-7 -- Always read 0
AGREEMENT
7.7.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated.
NON-DISCLOSURE
7.7.4 Break Interrupts The break module can stop normal program flow at a software programmable break point by asserting its break interrupt output. (See Section 17. Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 92 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Low-Power Modes
The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism -- for example, a read of one register followed by the read or write of another -- are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.
7.8 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 7.8.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-15 shows the timing for wait mode entry.
ADDRESS BUS WAIT ADDR WAIT ADDR + 1 SAME SAME
DATA BUS
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 7-15. Wait Mode Entry Timing
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 93
NON-DISCLOSURE
AGREEMENT
REQUIRED
7.7.5 Status Flag Protection in Break Mode
System Integration Module (SIM)
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the configuration register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. Figure 7-16 and Figure 7-17 show the timing for wait recovery.
AGREEMENT
REQUIRED
ADDRESS BUS
$6E0B
$6E0C
$00FF
$00FE
$00FD
$00FC
DATA BUS
$A6
$A6
$A6
$01
$0B
$6E
EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
NON-DISCLOSURE
Figure 7-16. Wait Recovery from Interrupt or Break
32 CYCLES ADDRESS BUS $6E0B
32 CYCLES RST VCT H RST VCTL
DATA BUS
$A6
$A6
$A6
RST
BUSCLKX4
Figure 7-17. Wait Recovery from Internal Reset
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 94 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) Low-Power Modes
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do not require long start-up times from stop mode.
NOTE:
External crystal applications should use the full stop recovery time by clearing the SSREC bit. The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-18 shows stop mode entry timing and Figure 7-19 shows the stop mode recovery time from interrupt or break
NOTE:
CPUSTOP
ADDRESS BUS
STOP ADDR
STOP ADDR + 1
SAME
SAME
DATA BUS
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.
Figure 7-18. Stop Mode Entry Timing
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 95
NON-DISCLOSURE
To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.
AGREEMENT
REQUIRED
7.8.2 Stop Mode
System Integration Module (SIM)
REQUIRED
STOP RECOVERY PERIOD BUSCLKX4
INTERRUPT
ADDRESS BUS
STOP +1
STOP + 2
STOP + 2
SP
SP - 1
SP - 2
SP - 3
Figure 7-19. Stop Mode Recovery from Interrupt
7.9 SIM Registers AGREEMENT
The SIM has three memory mapped registers. Table 7-4 shows the mapping of these registers. Table 7-4. SIM Registers
Address $FE00 $FE01 $FE03 Register BSR SRSR BFCR Access Mode User User User
NON-DISCLOSURE
7.9.1 SIM Reset Status Register This register contains seven flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register.
Address: $FE01 Bit 7 Read: Write: POR: 1 0 0 0 0 0 0 0 POR 6 PIN 5 COP 4 ILOP 3 ILAD 2 MODRST 1 LVI Bit 0 0
= Unimplemented
Figure 7-20. SIM Reset Status Register (SRSR)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 96 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) SIM Registers
PIN -- External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP -- Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP -- Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD -- Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MODRST -- Monitor Mode Entry Module Reset bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQB = VDD 0 = POR or read of SRSR LVI -- Low Voltage Inhibit Reset bit 1 = Last reset caused by LVI circuit 0 = POR or read of SRSR
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 97
NON-DISCLOSURE
AGREEMENT
REQUIRED
POR -- Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR
System Integration Module (SIM)
7.9.2 Break Flag Control Register The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: Reset: 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
AGREEMENT
REQUIRED
Figure 7-21. Break Flag Control Register (BFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 98 System Integration Module (SIM) MOTOROLA
System Integration Module (SIM) SIM Registers
The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode. This register is only used in emulation mode.
Address: $FE00 Bit 7 Read: Write: Reset: R = Reserved R 6 R 5 R 4 R 3 R 2 R 1 SBSW Note 1 Bit 0 R
1. Writing a logic 0 clears SBSW.
Figure 7-22. Break Status Register (BSR) SBSW -- SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Wait mode was exited by break interrupt 0 = Wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA System Integration Module (SIM) 99
NON-DISCLOSURE
AGREEMENT
0
REQUIRED
7.9.3 Break Status Register
System Integration Module (SIM)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 100 System Integration Module (SIM) MOTOROLA
AGREEMENT
REQUIRED
Section 8. Oscillator Module (OSC)
8.1 Contents
8.2 8.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.4.1 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 Internal to External Clock Switching. . . . . . . . . . . . . . . . 104 8.4.2 External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107 8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . 108 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109 8.5.7 Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109 8.5.8 Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 8.8 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.9 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.1 Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 101
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Oscillator Module (OSC) 8.2 Introduction
The oscillator module is used to provide a stable clock source for the microcontroller system and bus. The oscillator module generates two output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is used by the system integration module (SIM) and the computer operating properly module (COP). The BUSCLKX2 clock is divided by two in the SIM to be used as the bus clock for the microcontroller. Therefore the bus frequency will be one forth of the BUSCLKX4 frequency.
AGREEMENT
REQUIRED
8.3 Features
The oscillator has these four clock source options available: 1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to 5%. This is the default option out of reset. 2. External oscillator: An external clock that can be driven directly into OSC1. 3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only. The capacitor is internal to the chip. 4. External crystal: A built-in oscillator module (XTAL oscillator) that requires an external crystal or ceramic-resonator.
NON-DISCLOSURE
8.4 Functional Description
The oscillator contains these major subsystems: * * * * * Internal oscillator circuit Internal or external clock switch control External clock circuit External crystal circuit External RC clock circuit
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 102 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC) Functional Description
The internal oscillator circuit is designed for use with no external components to provide a clock source with tolerance less than 25% untrimmed. An 8-bit trimming register allows the adjust to a tolerance of less than 5%. The internal oscillator will generate a clock of 12.8 MHz typical (INTCLK) resulting in a bus speed (internal clock / 4) of 3.2 MHz. 3.2 MHz came from the maximum bus speed guaranteed at 3 V which is 4 MHz. Since the internal oscillator will have a 25% tolerance (pre-trim), then the +25% case should not allow a frequency higher than 4 MHz: 3.2 MHz + 25% = 4 MHz Figure 8-2 shows how BUSCLKX4 is derived from INTCLK and, like the RC oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in PTAPUE register. See Section 12. Input/Output (I/O) Ports.
8.4.1.1 Internal Oscillator Trimming The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and -128 steps. Increasing OSCTRIM value increases the clock period. Trimming will allow the internal clock frequency value fit in a 5% range around12.8 MHz. There's an option to order a trimmed version of MC68HC908QY4. The trimming value will be provided in a known FLASH location, $FFC0. So that the user would be able to copy this byte from the FLASH to the OSCTRIM register right at the beginning of assembly code. Reset loads OSCTRIM with a default value of $80.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 103
NON-DISCLOSURE
AGREEMENT
REQUIRED
8.4.1 Internal Oscillator
Oscillator Module (OSC)
8.4.1.2 Internal to External Clock Switching When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following steps: 1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an external crystal oscillator, set PTA4 (OSC2) as an output and drive high for several cycles. This may help the crystal circuit start more robustly. 2. Set CONFIG2 bits OSCOPT[1:0] according to Table 8-2. The oscillator module control logic will then set OSC1 as an external clock input and, if the external crystal option is selected, OSC2 will also be set as the clock output. 3. Create a software delay to wait the stabilization time needed for the selected clock source (crystal, resonator, RC) as recommended by the component manufacturer. A good rule of thumb for crystal oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait approximately 1 msec. 4. After the manufacturer's recommended delay has elapsed, the ECGON bit in the OSC status register (OSCSTAT) needs to be set by the user software. 5. After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock rising edges. 6. The OSC module then switches to the external clock. Logic provides a glitch free transition. 7. The OSC module first sets the ECGST bit in the OSCSTAT register and then stops the internal oscillator.
NON-DISCLOSURE
AGREEMENT
REQUIRED
NOTE:
Once transition to the external clock is done, the internal oscillator will only be reactivated with reset. No post-switch clock monitor feature is implemented (clock does not switch back to internal if external clock dies).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 104 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC) Functional Description
The external clock option is designed for use when a clock signal is available in the application to provide a clock source to the microcontroller. The OSC1 pin is enabled as an input by the oscillator module. The clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2. In this configuration, the OSC2 pin cannot output BUSCLKX4. So the OSC2EN bit in the port A pullup enable register will be clear to enable PTA4 I/O functions on the pin.
8.4.3 XTAL Oscillator The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The OSC2EN bit in the port A pullup enable register has no effect when this clock mode is selected. In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown in Figure 8-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: * * * * * Crystal, X1 Fixed capacitor, C1 Tuning capacitor, C2 (can also be a fixed capacitor) Feedback resistor, RB Series resistor, RS (optional)
NOTE:
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer's data for more information.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 105
NON-DISCLOSURE
AGREEMENT
REQUIRED
8.4.2 External Oscillator
Oscillator Module (OSC)
REQUIRED
FROM SIM
TO SIM BUSCLKX4
TO SIM BUSCLKX2
XTALCLK SIMOSCEN
/2
MCU
OSC1 OSC2
RS(1) RB
AGREEMENT
X1
C1
C2
Note 1. RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer's data. See Section 18. Electrical Specifications for component value requirements.
Figure 8-1. XTAL Oscillator External Connections
NON-DISCLOSURE
8.4.4 RC Oscillator The RC oscillator circuit is designed for use with external R to provide a clock source with tolerance less than 25%. In its typical configuration, the RC oscillator requires two external components, one R and one C. In the MC68HC908QY4, the capacitor is internal to the chip. The R value should have a tolerance of 1% or less, to obtain a clock source with less than 25% tolerance. The oscillator configuration uses one component, REXT. In this configuration, the OSC2 pin can be left in the reset state as PTA4. Or, the OSC2EN bit in the port A pullup enable register can be set to enable the OSC2 function on the pin without affecting the clocks.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 106 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC) Oscillator Module Signals
OSCRCOPT FROM SIM INTCLK 0 BUSCLKX4 1 SIMOSCEN EXTERNAL RC EN OSCILLATOR RCCLK /2 BUSCLKX2 TO SIM TO SIM
1 PTA4 I/O
0
PTA4 OSC2EN
MCU
OSC1 PTA4/BUSCLKX4 (OSC2)
VDD REXT
See Section 18. Electrical Specifications for component value requirements.
Figure 8-2. RC Oscillator External Connections
8.5 Oscillator Module Signals
The following paragraphs describe the signals that are inputs to and outputs from the oscillator module.
8.5.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is either an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an external clock source. For the internal oscillator configuration, the OSC1 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 107
NON-DISCLOSURE
AGREEMENT
REQUIRED
Oscillator Module (OSC)
8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) For the XTAL oscillator device, the OSC2 pin is the crystal oscillator inverting amplifier output. For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O function. The OSC2EN bit has no effect. For the internal oscillator or RC oscillator options, the OSC2 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins, or the output of the oscillator clock (BUSCLKX4). Table 8-1. OSC2 Pin Function
Option XTAL oscillator External clock Internal oscillator or RC oscillator OSC2 Pin Function Inverting OSC1 PTA4 I/O Controlled by OSC2EN bit in PTAPUE register OSC2EN = 0: PTA4 I/O OSC2EN = 1: BUSCLKX4 output
AGREEMENT
REQUIRED
8.5.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables either the XTAL oscillator circuit, the RC oscillator, or the internal oscillator.
NON-DISCLOSURE
8.5.4 XTAL Oscillator Clock (XTALCLK) XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start up.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 108 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC) Low Power Modes
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of external R and internal C. Figure 8-2 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry.
8.5.6 Internal Oscillator Clock (INTCLK) INTCLK is the internal oscillator output signal. Its nominal frequency is fixed to 12.8 MHz, but it can be also trimmed using the oscillator trimming feature of the OSCTRIM register (see 8.4.1.1 Internal Oscillator Trimming).
8.5.7 Oscillator Out 2 (BUSCLKX4) BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is driven to the SIM module and is used to determine the COP cycles.
8.5.8 Oscillator Out (BUSCLKX2) The frequency of this signal is equal to half of the BUSCLKX4, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided again in the SIM and results in the internal bus frequency being one fourth of either the XTALCLK, RCCLK, or INTCLK frequency.
8.6 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 109
NON-DISCLOSURE
AGREEMENT
REQUIRED
8.5.5 RC Oscillator Clock (RCCLK)
Oscillator Module (OSC)
8.6.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.
REQUIRED
8.6.2 Stop Mode The STOP instruction disables either the XTALCLK, the RCCLK, or INTCLK output, hence BUSCLKX2 and BUSCLKX4.
AGREEMENT
8.7 Oscillator During Break Mode
The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the device enters the break state.
8.8 CONFIG2 Options
Two CONFIG2 register options affect the operation of the oscillator module: OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have a default configuration. Refer to Section 5. Configuration Register (CONFIG) for more information on how the CONFIG2 register is used. Table 8-2 shows how the OSCOPT bits are used to select the oscillator clock source. Table 8-2. Oscillator Modes
OSCOPT1 0 0 1 1 OSCOPT0 0 1 0 1 Oscillator Modes Internal Oscillator External Oscillator External RC External Crystal
NON-DISCLOSURE
110
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC) Input/Output (I/O) Registers
The oscillator module contains these two registers: 1. Oscillator status register (OSCSTAT) 2. Oscillator trim register (OSCTRIM)
8.9.1 Oscillator Status Register The oscillator status register (OSCSTAT) contains the bits for switching from internal to external clock sources
Address: $0036 Bit 7 Read: R Write: Reset: 0 R 0 = Reserved 0 0 0 0 0 0 R R R R R ECGON 6 5 4 3 2 1 Bit 0 ECGST
Figure 8-3. Oscillator Status Register (OSCSTAT) ECGON -- External Clock Generator On Bit This read/write bit enables external clock generator, so that the switching process can be initiated. This bit is forced low during reset. This bit is ignored in monitor mode with the internal oscillator bypassed, PTM or CTM mode. 1 = External clock generator enabled 0 = External clock generator disabled ECGST -- External Clock Status Bit This read-only bit indicates whether or not an external clock source is engaged to drive the system clock. 1 = An external clock source engaged 0 = An external clock source disengaged
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 111
NON-DISCLOSURE
AGREEMENT
REQUIRED
8.9 Input/Output (I/O) Registers
Oscillator Module (OSC)
8.9.2 Oscillator Trim Register (OSCTRIM)
Address: $0038 Bit 7 Read: TRIM7 Write: Reset: 1 0 0 0 0 0 0 0 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM71 TRIM0 6 5 4 3 2 1 Bit 0
REQUIRED
Figure 8-4. Oscillator Trim Register (OSCTRIM) TRIM7-TRIM0 -- Internal Oscillator Trim Factor Bits These read/write bits change the size of the internal capacitor used by the internal oscillator. By measuring the period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by appoximately 0.2% of the untrimmed period (the period for TRIM = $80). The trimmed frequency is guaranteed not to vary by more than 5% over the full specified range of temperature and voltage. The reset value is $80, which sets the frequency to 12.8 MHz (3.2 MHz bus speed) 25%.
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 112 Oscillator Module (OSC) MOTOROLA
AGREEMENT
Section 9. Monitor ROM (MON)
9.1 Contents
9.2 9.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4.1 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.2 VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.5 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
9.2 Introduction
This section describes the monitor read-only memory (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 113
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Monitor ROM (MON) 9.3 Features
Features of the monitor ROM include: * * * * * * * * * * * Normal user-mode pin functionality on most pins One pin dedicated to serial communication between monitor read-only memory (ROM) and host computer Standard mark/space non-return-to-zero (NRZ) communication with host computer Execution of code in random-access memory (RAM) or FLASH FLASH memory security feature(1) FLASH memory programming interface Use of external 9.83 MHz crystal or clock to generate internal frequency of 2.4576 MHz Simple internal oscillator mode of operation (no external clock or high voltage) 574 bytes monitor ROM code size Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) Standard monitor mode entry if high voltage is applied to IRQ
NON-DISCLOSURE
AGREEMENT
REQUIRED
9.4 Functional Description
The monitor ROM receives and executes commands from a host computer. Figure 9-1, Figure 9-2, and Figure 9-3 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 114 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
Table 9-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one of the following sets of conditions is met: * If $FFFE and $FFFF does not contain $FF (programmed state): - The external clock is 9.8304 MHz - IRQ = VTST * If $FFFE and $FFFF contain $FF (erased state): - The external clock is 9.8304 MHz - IRQ = VDD (this can be implemented through the internal IRQ pullup) * If $FFFE and $FFFF contain $FF (erased state): - IRQ = VSS (internal oscillator is selected, no external clock required)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 115
NON-DISCLOSURE
AGREEMENT
The monitor code has been updated from previous versions of the monitor code to allow enabling the internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if programmed) to generate the desired internal frequency (3.2 MHz). Since this feature is enabled only when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must remain low during this monitor session in order to maintain communication.
REQUIRED
the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.
Monitor ROM (MON)
REQUIRED
VDD N.C. RST (PTA3) VDD 0.1 F MAX232 1 1 F + 3 4 1 F + 5 C2- C1+ 16 + C1- C2+ 15 + V+ 2 VDD 1 F 10 9 74HC125 3 2 1 IRQ (PTA2) PTA4 + 10 k 74HC125 5 6 4 N.C. 1 F 1 F 10 k* PTA1 N.C. VDD 9.8304 MHz CLOCK OSC1 (PTA5)
V- 6
AGREEMENT
DB9 2 3 5 7 8
PTA0 VSS
* Value not critical
Figure 9-1. Monitor Mode Circuit (External Clock, No High Voltage)
VDD N.C. RST (PTA3)
VDD 0.1 F
NON-DISCLOSURE
MAX232 1 1 F + C1+ 16
VDD +
N.C.
OSC1 (PTA5)
1 F + 1 F 10 k* IRQ (PTA2)
3 C1- 4 1 F + 5 C2- DB9 2 3 5 7 8 C2+
15
PTA1
N.C.
V+ 2 V- 6 1 F 10 9 74HC125 3 2 1 + 10 k 74HC125 5 6 4
PTA4 VDD
N.C.
PTA0
VSS
* Value not critical
Figure 9-2. Monitor Mode Circuit (Internal Clock, No High Voltage)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 116 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
VDD 10 k* RST (PTA3) 0.1 F VDD 0.1 F
9.8304 MHz CLOCK MAX232 1 1 F + 3 4 1 F + 5 C2- DB9 2 3 5 7 8 10 9 74HC125 3 2 1 C1+ 16 + C1- C2+ 15 + V+ 2 VDD 1 F 9.1 V + 10 k 74HC125 5 6 4 VTST 1 F 1 F 1 k VDD
OSC1 (PTA5)
VDD
10 k* PTA1
10 k* IRQ (PTA2) PTA4
V- 6
VSS PTA0
* Value not critical
Figure 9-3. Monitor Mode Circuit (External Clock, with High Voltage) Table 9-1. Monitor Mode Signal Requirements and Options
Mode IRQ RST $FFFE/ $FFFF PTA1 PTA4 External Bus Clock Frequency (MHz) (MHz) COP Comment
VTST monitor mode Forced monitor mode Forced monitor mode User mode
VTST VDD
X
1
0
9.8304
2.4576
PTA1 and PTA4 voltages are required. RST and Disabled OSC1 functions are active OSC1 function is active. RST and IRQ only Disabled available if later configured. RST, IRQ, and OSC1 Disabled only available if later configured. Enters user mode Enabled RST pin only available if later configured
VDD
X
$FF (blank) $FF (blank) Not $FF (programmed)
X
X
9.8304
2.4576
VSS VDD or VSS
X
X
X
X
3.2
X
X
X
X
--
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 117
NON-DISCLOSURE
AGREEMENT
REQUIRED
VDD
Monitor ROM (MON)
If entering monitor mode without high voltage on IRQ (above condition set 2 or 3, where applied voltage is VDD or VSS), then startup port pin requirements and conditions, (PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit programming.
REQUIRED
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial power-on reset (POR). Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ must be used to enter monitor mode. The computer operating properly (COP) module is disabled in monitor mode based on these conditions: * If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ. If monitor mode was entered with VTST on IRQ (condition set 1), then the COP is disabled as long as VTST is applied to IRQ.
AGREEMENT
*
NOTE:
The PTA0 pin must be at logic 1 (pullup) during chip power up to enter monitor mode properly. Figure 9-4 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. No external clock is required if IRQ = 0 since chip clock will be drive by internal clock generator. Enter monitor mode with pin configuration shown in Figure 9-1 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes (see 9.5 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command.
NON-DISCLOSURE
118
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
POR RESET
IS VECTOR BLANK? YES MONITOR MODE
NO
NORMAL USER MODE
EXECUTE MONITOR CODE
POR TRIGGERED? YES
NO
Figure 9-4. Low-Voltage Monitor Mode Entry Flowchart
9.4.1 Forced Monitor Mode If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset in user mode. The MENRST module monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high voltage on the IRQ pin. Once out of reset, the monitor code is initially executing off the internal clock at its default frequency. If IRQ is tied high, all pins will default to regular input port functions except for PTA0 and PTA5 which will operate as a serial communication port and OSC1 input respectively (refer to Figure 9-1). That will allow the clock to be driven from an external source through OSC1 pin. If IRQ is tied low, all pins will default to regular input port function except for PTA0 which will operate as serial communication port. Refer to Figure 9-2. Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the Port A data register will always read 0.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 119
NON-DISCLOSURE
AGREEMENT
REQUIRED
Monitor ROM (MON)
The BIH and BIL instructions will behave as if the IRQ pin is enabled, regardless of the settings in the configuration register. See Section 5. Configuration Register (CONFIG). The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will automatically force the MCU to come back to the forced monitor mode. In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code.
AGREEMENT
REQUIRED
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST (when RST pin available) low will not exit monitor mode in this situation. Table 9-2 summarizes the differences between user mode and monitor mode regarding vectors. Table 9-2. Mode Difference
Functions Modes Reset Vector High $FFFE $FEFE Reset Vector Low $FFFF $FEFF Break Vector High $FFFC $FEFC Break Vector Low $FFFD $FEFD SWI Vector High $FFFC $FEFC SWI Vector Low $FFFD $FEFD
NON-DISCLOSURE
User Monitor
9.4.2 VTST Monitor Mode RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as VTST is applied to IRQ pin. If the IRQ pin is lowered (no longer VTST) then the chip will still be operating in monitor mode, but the pin functions will be determined by the settings in the configuration registers (see Section 5. Configuration Register (CONFIG)) when VTST was lowered, except for the IRQ pin. IRQ will not function as a port input pin in monitor mode. Bit 2 of the Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is enabled, regardless of the settings in the configuration registers.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 120 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.
START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT
Figure 9-5. Monitor Data Format 9.4.4 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.
MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-6. Break Transaction 9.4.5 Baud Rate The communication baud rate is controlled by the external frequency and the divide ratio is 1024. Table 9-3 has the external frequency required to achieve a standard baud rate of 9600 bps. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If a crystal is used as the source, be aware of the upper frequency limit that the MCU can operate. Table 9-3. Monitor Baud Rate Selection
External Frequency 9.8304 MHz -- IRQ VTST or VDD VSS Internal Frequency 2.4576 MHz 3.2 MHz (Trimmed) Baud Rate (bps) 9600 9600
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 121
NON-DISCLOSURE
AGREEMENT
REQUIRED
9.4.3 Data Format
Monitor ROM (MON)
9.4.6 Commands The monitor ROM firmware uses these commands: * * * * * * READ (read memory) WRITE (write memory) IREAD (indexed read) IWRITE (indexed write) READSP (read stack pointer) RUN (run user program)
AGREEMENT
REQUIRED
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command.
NOTE:
Wait one bit time after each echo before sending the next byte.
FROM HOST
NON-DISCLOSURE
READ
READ
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
4
1
4
1
4
1
3, 2
4 RETURN
ECHO Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times
3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte.
Figure 9-7. Read Transaction
FROM HOST
WRITE 3 ECHO 1
WRITE 3
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
1
3
1
3
1
2, 3
Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte.
Figure 9-8. Write Transaction
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 122 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
Table 9-4. READ (Read Memory) Command
Description Operand Data Returned Opcode Read byte from memory 2-byte address in high-byte:low-byte order Returns contents of specified address $4A Command Sequence
SENT TO MONITOR
READ
READ
ADDRESS ADDRESS ADDRESS HIGH HIGH LOW
ADDRESS LOW
DATA
ECHO
RETURN
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 123
NON-DISCLOSURE
AGREEMENT
REQUIRED
A brief description of each monitor mode command is given in Table 9-4 through Table 9-9.
Monitor ROM (MON)
Table 9-5. WRITE (Write Memory) Command
Description Operand Data Returned Opcode Write byte to memory 2-byte address in high-byte:low-byte order; low byte followed by data byte None $49 Command Sequence
FROM HOST
AGREEMENT
REQUIRED
WRITE
WRITE
ADDRESS HIGH
ADDRESS
HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
ECHO
Table 9-6. IREAD (Indexed Read) Command
Description Operand Data Returned Opcode Read next 2 bytes in memory from last address accessed 2-byte address in high byte:low byte order Returns contents of next two addresses $1A Command Sequence
FROM HOST
NON-DISCLOSURE
IREAD
IREAD
DATA
DATA
ECHO
RETURN
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 124 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Functional Description
Description Operand Data Returned Opcode
Write to last address accessed + 1 Single data byte None $19 Command Sequence
FROM HOST
IWRITE
IWRITE
DATA
DATA
ECHO
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 125
NON-DISCLOSURE
AGREEMENT
REQUIRED
Table 9-7. IWRITE (Indexed Write) Command
Monitor ROM (MON)
Table 9-8. READSP (Read Stack Pointer) Command
Description Operand Data Returned Opcode Reads stack pointer None Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order $0C Command Sequence
FROM HOST
AGREEMENT
REQUIRED
READSP
READSP
SP HIGH
SP LOW
ECHO
RETURN
Table 9-9. RUN (Run User Program) Command
Description Operand Data Returned Opcode Executes PULH and RTI instructions None None $28 Command Sequence
FROM HOST
NON-DISCLOSURE
RUN
RUN
ECHO
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 126 Monitor ROM (MON) MOTOROLA
Monitor ROM (MON) Security
SP HIGH BYTE OF INDEX REGISTER CONDITION CODE REGISTER ACCUMULATOR LOW BYTE OF INDEX REGISTER HIGH BYTE OF PROGRAM COUNTER LOW BYTE OF PROGRAM COUNTER SP + 1 SP + 2 SP + 3 SP + 4 SP + 5 SP + 6 SP + 7
Figure 9-9. Stack Pointer at Monitor Mode Entry
9.5 Security
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6-$FFFD. Locations $FFF6-$FFFD contain user-defined data.
NOTE:
Do not leave locations $FFF6-$FFFD blank. For security reasons, program locations $FFF6-$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6-$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. See Figure 9-10.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Monitor ROM (MON) 127
NON-DISCLOSURE
AGREEMENT
REQUIRED
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6.
Monitor ROM (MON)
REQUIRED
VDD 4096 + 32 CGMXCLK CYCLES RST COMMAND 1 BYTE 2 ECHO BYTE 8 ECHO 2 BREAK 4 1 COMMAND ECHO
BYTE 1
BYTE 2
FROM HOST PA0 256 BUS CYCLES (MINIMUM) FROM MCU 1 BYTE 1 ECHO 4 1
AGREEMENT
Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte.
Figure 9-10. Monitor Mode Entry Timing Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6-$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.
NON-DISCLOSURE
NOTE:
The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 128 Monitor ROM (MON) MOTOROLA
BYTE 8
Section 10. Timer Interface Module (TIM)
10.1 Contents
10.2 10.3 10.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.6 10.7 10.8 10.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 129
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Timer Interface Module (TIM) 10.2 Introduction
This section describes the timer interface module (TIM). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 10-1 is a block diagram of the TIM.
REQUIRED
10.3 Features
Features of the TIM include the following: * Two input capture/output compare channels - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action * * * * * Buffered and unbuffered pulse width modulation (PWM) signal generation Programmable TIM clock input with 7-frequency internal bus clock prescaler selection Free-running or modulo up-count operation Toggle any channel pin on overflow TIM counter stop and reset bits
NON-DISCLOSURE
AGREEMENT
10.4 Pin Name Conventions
The TIM shares two input/output (I/O) pins with two port A I/O pins. The full names of the TIM I/O pins are listed in Table 10-1. The generic pin name appear in the text that follows. Table 10-1. Pin Name Conventions
TIM Generic Pin Names: Full TIM Pin Names: TCH0 PTA0/TCH0 TCH1 PTA1/TCH1
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 130 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Functional Description
Figure 10-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels are programmable independently as input capture or output compare channels.
PRESCALER SELECT INTERNAL BUS CLOCK TSTOP TRST 16-BIT COUNTER 16-BIT COMPARATOR PRESCALER
PS2
PS1
PS0
TOF TOIE
INTERRUPT LOGIC
TOV0 CHANNEL 0 16-BIT COMPARATOR TCH0H:TCH0L 16-BIT LATCH MS0A MS0B TOV1 INTERNAL BUS CHANNEL 1 16-BIT COMPARATOR TCH1H:TCH1L 16-BIT LATCH MS1A CH1IE CH1F INTERRUPT LOGIC ELS1B ELS1A CH1MAX PORT LOGIC TCH1 CH0IE CH0F INTERRUPT LOGIC ELS0B ELS0A CH0MAX PORT LOGIC TCH0
Figure 10-1. TIM Block Diagram
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 131
NON-DISCLOSURE
TMODH:TMODL
AGREEMENT
REQUIRED
10.5 Functional Description
Timer Interface Module (TIM)
REQUIRED
Addr.
Register Name TIM Status and Control Read: Register Write: (TSC) See page 141. Reset: Read: TIM Counter Register High (TCNTH) Write: See page 144. Reset: Read: TIM Counter Register Low (TCNTL) Write: See page 144. Reset: TIM Counter Modulo Read: Register High Write: (TMODH) See page 144. Reset: TIM Counter Modulo Read: Register Low Write: (TMODL) See page 144. Reset: TIM Channel 0 Status and Read: Control Register Write: (TSC0) See page 145. Reset: TIM Channel 0 Read: Register High Write: (TCH0H) See page 149. Reset: TIM Channel 0 Read: Register Low Write: (TCH0L) See page 149. Reset: TIM Channel 1 Status and Read: Control Register Write: (TSC1) See page 145. Reset:
Bit 7 TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0 Bit 9
Bit 0 PS0 0 Bit 8
$0020
0 0 Bit 15 0 Bit 14 1 Bit 13
0 Bit 12
0 Bit 11
0 Bit 10
$0021
0 Bit 7
0 Bit 6
0 Bit 5
0 Bit 4
0 Bit 3
0 Bit 2
0 Bit 1
0 Bit 0
AGREEMENT
$0022
0 Bit 15 1 Bit 7 1 CH0F
0 Bit 14 1 Bit 6 1 CH0IE
0 Bit 13 1 Bit 5 1 MS0B 0 Bit 13
0 Bit 12 1 Bit 4 1 MS0A 0 Bit 12
0 Bit 11 1 Bit 3 1 ELS0B 0 Bit 11
0 Bit 10 1 Bit 2 1 ELS0A 0 Bit 10
0 Bit 9 1 Bit 1 1 TOV0 0 Bit 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0023
$0024
$0025
0 0 Bit 15 0 Bit 14
NON-DISCLOSURE
$0026
Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0027
Indeterminate after reset CH1F CH1IE 0 0 0 0 0 0 0 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX
$0028
= Unimplemented
Figure 10-2. TIM I/O Register Summary
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 132 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Functional Description
$0029
TIM Channel 1 Read: Register High Write: (TCH1H) See page 149. Reset: TIM Channel 1 Read: Register Low Write: (TCH1L) See page 149. Reset:
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$002A
Indeterminate after reset = Unimplemented
10.5.1 TIM Counter Prescaler The TIM clock source is one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source.
10.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM central processor unit (CPU) interrupt requests.
10.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 133
NON-DISCLOSURE
AGREEMENT
Figure 10-2. TIM I/O Register Summary (Continued)
REQUIRED
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Timer Interface Module (TIM)
10.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: * When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
AGREEMENT
REQUIRED
NON-DISCLOSURE
*
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 134 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Functional Description
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 10-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 135
NON-DISCLOSURE
10.5.4 Pulse Width Modulation (PWM)
AGREEMENT
REQUIRED
10.5.3.2 Buffered Output Compare
Timer Interface Module (TIM)
REQUIRED
OVERFLOW PERIOD
OVERFLOW
OVERFLOW
PULSE WIDTH TCHx
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 10-3. PWM Period and Pulse Width
AGREEMENT
The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000. See 10.10.1 TIM Status and Control Register. The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 10.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 10.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 136 Timer Interface Module (TIM) MOTOROLA
NON-DISCLOSURE
Timer Interface Module (TIM) Functional Description
*
When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
*
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
10.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 137
NON-DISCLOSURE
AGREEMENT
REQUIRED
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.
REQUIRED
10.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. See Table 10-3. b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 10-3.
NON-DISCLOSURE
AGREEMENT
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 138 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Interrupts
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM Channel Status and Control Registers.
10.6 Interrupts
The following TIM sources can generate interrupt requests: * TIM overflow flag (TOF) -- The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. TIM channel flags (CH1F:CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE =1. CHxF and CHxIE are in the TIM channel x status and control register.
10.7 Wait Mode
The WAIT instruction puts the MCU in low power-consumption standby mode. The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 139
NON-DISCLOSURE
*
AGREEMENT
REQUIRED
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.
Timer Interface Module (TIM)
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
REQUIRED
10.8 TIM During Break Interrupts
A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See 7.9.2 Break Flag Control Register. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
NON-DISCLOSURE
AGREEMENT
10.9 Input/Output Signals
Port A shares two of its pins with the TIM. The two TIM channel I/O pins are PTA0/TCH0 and PTA1/TCH1. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTA0/TCH0 can be configured as a buffered output compare or buffered PWM pin.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 140 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Input/Output Registers
The following I/O registers control and monitor operation of the TIM: * * * * * TIM status and control register (TSC) TIM control registers (TCNTH:TCNTL) TIM counter modulo registers (TMODH:TMODL) TIM channel status and control registers (TSC0 and TSC1) TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)
10.10.1 TIM Status and Control Register The TIM status and control register (TSC) does the following: * * * * * Enables TIM overflow interrupts Flags TIM overflows Stops the TIM counter Resets the TIM counter Prescales the TIM counter clock
Bit 7 Read: Write: Reset: TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0
Bit 0 PS0 0
0 0 0 1
0
0
0
= Unimplemented
Figure 10-4. TIM Status and Control Register (TSC)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 141
NON-DISCLOSURE
Address: $0020
AGREEMENT
REQUIRED
10.10 Input/Output Registers
Timer Interface Module (TIM)
TOF -- TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE -- TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP -- TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active
NON-DISCLOSURE
AGREEMENT
REQUIRED
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST -- TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 142 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Input/Output Registers
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 10-2 shows. Reset clears the PS[2:0] bits. Table 10-2. Prescaler Selection
PS2 0 0 0 0 1 1 1 1 PS1 0 0 1 1 0 0 1 1 PS0 0 1 0 1 0 1 0 1 TIM Clock Source Internal bus clock / 1 Internal bus clock / 2 Internal bus clock / 4 Internal bus clock / 8 Internal bus clock / 16 Internal bus clock / 32 Internal bus clock / 64 Not available
10.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 143
NON-DISCLOSURE
AGREEMENT
REQUIRED
PS[2:0] -- Prescaler Select Bits
Timer Interface Module (TIM)
REQUIRED
Address:
$0021 Bit 7
TCNTH 6 Bit 14 5 Bit 13 4 Bit 12 3 Bit 11 2 Bit 10 1 Bit 9 Bit 0 Bit 8
Read: Write: Reset:
Bit 15
0
0 TCNTL 6 Bit 6
0
0
0
0
0
0
Address: $0022 Bit 7 Read: Write: Reset: 0 Bit 7
5 Bit 5
4 Bit 4
3 Bit 3
2 Bit 2
1 Bit 1
Bit 0 Bit 0
AGREEMENT
0
0
0
0
0
0
0
= Unimplemented
Figure 10-5. TIM Counter Registers (TCNTH:TCNTL)
10.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.
Address: $0023 Bit 7 Read: Write: Reset: 1 1 TMODL 6 Bit6 1 5 Bit5 1 4 Bit4 1 3 Bit3 1 2 Bit2 1 1 Bit1 1 Bit 0 Bit0 1 1 1 1 1 1 1 Bit15 TMODH 6 Bit14 5 Bit13 4 Bit12 3 Bit11 2 Bit10 1 Bit9 Bit 0 Bit8
NON-DISCLOSURE
Address: $0024 Bit 7 Read: Write: Reset: 1 Bit7
Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 144 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Input/Output Registers
Each of the TIM channel status and control registers does the following: * * * * * * * * Flags input captures and output compares Enables input capture and output compare interrupts Selects input capture, output compare, or PWM operation Selects high, low, or toggling output on output compare Selects rising edge, falling edge, or any edge as the active input capture trigger Selects output toggling on TIM overflow Selects 0% and 100% PWM duty cycle Selects buffered or unbuffered output compare/PWM operation
TSC0 6 CH0IE 0 TSC1 6 CH1IE 0 5 0 4 MS1A 0 3 ELS1B 0 2 ELS1A 0 1 TOV1 0 Bit 0 CH1MAX 0 5 MS0B 0 4 MS0A 0 3 ELS0B 0 2 ELS0A 0 1 TOV0 0 Bit 0 CH0MAX 0
Address: $0025 Bit 7 Read: Write: Reset: CH0F 0 0
Address: $0028 Bit 7 Read: Write: Reset: CH1F 0 0
0
= Unimplemented
Figure 10-7. TIM Channel Status and Control Registers (TSC0:TSC1) CHxF -- Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 145
NON-DISCLOSURE
AGREEMENT
REQUIRED
10.10.4 TIM Channel Status and Control Registers
Timer Interface Module (TIM)
Clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE -- Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB -- Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA -- Mode Select Bit A When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 10-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 10-3). Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high
NON-DISCLOSURE
AGREEMENT
REQUIRED
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 146 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Input/Output Registers
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 10-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 10-3. Mode, Edge, and Level Selection
MSxB X X 0 0 0 0 0 0 1 1 1 MSxA 0 1 0 0 0 1 1 1 X X X ELSxB 0 0 0 1 1 0 1 1 0 1 1 ELSxA 0 Output preset 0 1 0 1 1 0 1 1 0 1 Input capture Pin under port control; initial output level low Capture on rising edge only Capture on falling edge only Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Mode Configuration Pin under port control; initial output level high
NOTE:
After initially enabling a TIM channel register for input capture operation and selecting the edge sensitivity, clear CHxF to ignore any erroneous edge detection flags.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 147
NON-DISCLOSURE
AGREEMENT
REQUIRED
ELSxB and ELSxA -- Edge/Level Select Bits
Timer Interface Module (TIM)
TOVx -- Toggle-On-Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow.
REQUIRED
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX -- Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.
OVERFLOW PERIOD OVERFLOW OVERFLOW OVERFLOW OVERFLOW
AGREEMENT
TCHx
NON-DISCLOSURE
OUTPUT COMPARE CHxMAX
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 10-8. CHxMAX Latency
10.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 148 Timer Interface Module (TIM) MOTOROLA
Timer Interface Module (TIM) Input/Output Registers
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.
Address: $0026 Bit 7 Read: Bit 15 Write: Reset: Address: $0027 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TCH0L 6 5 4 3 2 1 Bit 0 Indeterminate after reset Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 TCH0H 6 5 4 3 2 1 Bit 0
Address: $0029 Bit 7 Read: Bit 15 Write: Reset:
TCH1H 6 Bit 14 5 Bit 13 4 Bit 12 3 Bit 11 2 Bit 10 1 Bit 9 Bit 0 Bit 8
Indeterminate after reset
Address: $02A Bit 7 Read: Bit 7 Write: Reset:
TCH1L 6 Bit 6 5 Bit 5 4 Bit 4 3 Bit 3 2 Bit 2 1 Bit 1 Bit 0 Bit 0
Indeterminate after reset
Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 149
NON-DISCLOSURE
AGREEMENT
REQUIRED
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read.
Timer Interface Module (TIM)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 150 Timer Interface Module (TIM) MOTOROLA
AGREEMENT
REQUIRED
Section 11. Analog-to-Digital Converter (ADC)
11.1 Contents
11.2 11.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.7 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.2 Introduction
This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit, 4-channel analog-to-digital converter. The ADC module is only available on the MC68HC908QY2, MC68HC908QT2, MC68HC908QY4, and MC68HC908QT4.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 151
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Analog-to-Digital Converter (ADC) 11.3 Features
Features of the ADC module include: * * * * * * 4 channels with multiplexed input Linear successive approximation with monotonicity 8-bit resolution Single or continuous conversion Conversion complete flag or conversion complete interrupt Selectable ADC clock
AGREEMENT
REQUIRED
Figure 11-1 provides a summary of the input/output (I/O) registers.
Addr.
Register Name ADC Status and Control Read: Register Write: (ADSCR) See page 157. Reset: Unimplemented
Bit 7 COCO
6 AIEN
5 ADCO 0
4 CH4 1
3 CH3 1
2 CH2 1
1 CH1 1
Bit 0 CH0 1
$003C
0
0
$003D
NON-DISCLOSURE
$003E
ADC Data Register (ADR) See page 159.
Read: Write: Reset: Read:
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
Indeterminate after reset 0 ADIV2 ADIV1 0 ADIV0 0 0 0 0 0 0 0 0 0 0
ADC Input Clock Register $003F (ADICLK) See page 159.
Write: Reset: 0
= Unimplemented
Figure 11-1. ADC I/O Register Summary
11.4 Functional Description
Four ADC channels are available for sampling external sources at pins PTA0, PTA1, PTA4, and PTA5. An analog multiplexer allows the single ADC converter to select one of the four ADC channels as an ADC
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 152 Analog-to-Digital Converter (ADC) MOTOROLA
Analog-to-Digital Converter (ADC) Functional Description
Figure 11-2 shows a block diagram of the ADC.
INTERNAL DATA BUS READ DDRA DISABLE RESET WRITE PTA PTAx ADCx DDRAx
WRITE DDRA
READ PTA
DISABLE ADC CHANNEL x ADC DATA REGISTER
INTERRUPT LOGIC
CONVERSION COMPLETE
ADC VOLTAGE IN ADCVIN ADC
CHANNEL SELECT (1 OF 4 CHANNELS)
CH[4:0]
AIEN
COCO
ADC CLOCK
BUS CLOCK
CLOCK GENERATOR
ADIV[2:0]
Figure 11-2. ADC Block Diagram
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 153
NON-DISCLOSURE
AGREEMENT
REQUIRED
voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is eight bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt.
Analog-to-Digital Converter (ADC)
11.4.1 ADC Port I/O Pins PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register (ADSCR), $003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.
AGREEMENT
REQUIRED
11.4.2 Voltage Conversion When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straight-line linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS.
NOTE:
Input voltage should not exceed the analog supply voltages.
NON-DISCLOSURE
11.4.3 Conversion Time Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1 MHz, then one conversion will take 16 s to complete. With a 1-MHz ADC internal clock the maximum sample rate is 62.5 kHz. Conversion Time = 16 ADC Clock Cycles ADC Clock Frequency
Number of Bus Cycles = Conversion Time x Bus Frequency
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 154 Analog-to-Digital Converter (ADC) MOTOROLA
Analog-to-Digital Converter (ADC) Interrupts
In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register (ADR) with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register.
The conversion process is monotonic and has no missing codes.
11.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a central processor unit (CPU) interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.
The following subsections describe the ADC in low-power modes.
11.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the microcontroller unit (MCU) out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR to logic 1's before executing the WAIT instruction.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 155
NON-DISCLOSURE
11.6 Low-Power Modes
AGREEMENT
11.4.5 Accuracy and Precision
REQUIRED
11.4.4 Continuous Conversion
Analog-to-Digital Converter (ADC)
11.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode.
REQUIRED
11.7 Input/Output Signals
The ADC module has four channels that are shared with I/O port A. ADC voltage in (ADCVIN) is the input voltage signal from one of the four ADC channels to the ADC module.
AGREEMENT
11.8 Input/Output Registers
These I/O registers control and monitor ADC operation: * * * ADC status and control register (ADSCR) ADC data register (ADR) ADC clock register (ADICLK)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 156 Analog-to-Digital Converter (ADC) MOTOROLA
Analog-to-Digital Converter (ADC) Input/Output Registers
The following paragraphs describe the function of the ADC status and control register (ADSCR).
Address: $003C Bit 7 Read: Write: Reset: 0 0 0 1 1 1 1 1 COCO AIEN ADCO CH4 CH3 CH2 CH1 CH0 6 5 4 3 2 1 Bit 0
= Unimplemented
Figure 11-3. ADC Status and Control Register (ADSCR) COCO -- Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever ADSCR is written or whenever the ADR is read. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read. AIEN -- ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when ADR is read or ADSCR is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO -- ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update ADR at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 157
NON-DISCLOSURE
AGREEMENT
REQUIRED
11.8.1 ADC Status and Control Register
Analog-to-Digital Converter (ADC)
CH[4:0] -- ADC Channel Select Bits CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to select one of the four ADC channels. The five select bits are detailed in Table 11-1. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1.
AGREEMENT
REQUIRED
NOTE:
Recovery from the disabled state requires one conversion cycle to stabilize. Table 11-1. MUX Channel Select
CH4 0 0 0 0 CH3 0 0 0 0 0 1 1 1 1 1 1 CH2 0 0 0 0 1 0 0 1 1 1 1 CH1 0 0 1 1 0 1 1 0 0 1 1 CH0 0 1 0 1 0 0 1 0 1 0 1 ADC Channel ADC0 ADC1 ADC2 ADC3 -- -- -- -- -- -- -- -- Reserved Unused VDDA(2) VSSA(2) ADC power off Unused (1) Input Select PTA0 PTA1 PTA4 PTA5
NON-DISCLOSURE
0 1 1 1 1 1 1
1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes, as specified in the table, are used to verify the operation of the ADC converter both in production test and for user applications.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 158 Analog-to-Digital Converter (ADC) MOTOROLA
Analog-to-Digital Converter (ADC) Input/Output Registers
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.
Address: $003E Bit 7 Read: Write: Reset: = Unimplemented Indeterminate after reset AD7 6 AD6 5 AD5 4 AD4 3 AD3 2 AD2 1 AD1 Bit 0 AD0
Figure 11-4. ADC Data Register (ADR)
11.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC.
Address: $003F Bit 7 Read: ADIV2 Write: Reset: 0 0 0 0 0 0 0 0 ADIV1 ADIV0 6 5 4 0 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 11-5. ADC Input Clock Register (ADICLK) ADIV2-ADIV0 -- ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 11-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 159
NON-DISCLOSURE
AGREEMENT
REQUIRED
11.8.2 ADC Data Register
Analog-to-Digital Converter (ADC)
Table 11-2. ADC Clock Divide Ratio
ADIV2 0 0 0 0 1
X = don't care
REQUIRED
ADIV1 0 0 1 1 X
ADIV0 0 1 0 1 X
ADC Clock Rate Bus clock / 1 Bus clock / 2 Bus clock / 4 Bus clock / 8 Bus clock / 16
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 160 Analog-to-Digital Converter (ADC) MOTOROLA
AGREEMENT
Section 12. Input/Output (I/O) Ports
12.1 Contents
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169
12.2 Introduction
The MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 have five bidirectional input-output (I/O) pins and one input only pin. The MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4 have thirteen bidirectional pins and one input only pin. All I/O pins are programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Figure 12-1 provides a summary of the I/O registers.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 161
NON-DISCLOSURE
AGREEMENT
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166
REQUIRED
Data Sheet -- MC68HC908QY4
Input/Output (I/O) Ports
REQUIRED
Addr.
Register Name Port A Data Register (PTA) See page 163. Port B Data Register (PTB) See page 167. Read: Write: Reset: Read: Write: Reset: Read: Write: Reset: Read: Write: Reset:
Bit 7 0
6 AWUL
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
$0000
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset 0 0 DDRA5 0 DDRB5 0 DDRA4 0 DDRB4 0 DDRA3 0 DDRB3 0 0 DDRA1 0 DDRB1 0 DDRA0 0 DDRB0 0
Data Direction Register A $0004 (DDRA) See page 164. Data Direction Register B $0005 (DDRB) See page 168.
AGREEMENT
0 DDRB7 0
0 DDRB6 0
0 DDRB2 0
$000B
Port A Input Pullup Read: OSC2EN Enable Register Write: (PTAPUE) See page 166. Reset: 0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 0 0 0 0 0 0 0
$000C
Port B Input Pullup Read: PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0 Enable Register Write: (PTBPUE) See page 169. Reset: 0 0 0 0 0 0 0 0 = Unimplemented
NON-DISCLOSURE
Figure 12-1. I/O Port Register Summary
12.3 Port A
Port A is an 6-bit special function port that shares all six of its pins with the keyboard interrupt (KBI) module (see Section 14. Keyboard Interrupt Module (KBI)). Each port A pin also has a software configurable pullup device if the corresponding port pin is configured as an input port.
NOTE:
PTA2 is input only. When the IRQ function is enabled in the configuration register 2 (CONFIG2), bit 2 of the port A data register (PTA) will always read a logic 0. In this case, the BIH and BIL instructions can be used to read the
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 162 Input/Output (I/O) Ports MOTOROLA
Input/Output (I/O) Ports Port A
12.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the six port A pins.
Address: $0000
Read: Write: Reset: Additional Functions:
0
AWUL
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
Unaffected by reset KBI5 KBI4 KBI3 KBI2 KBI1 KBI0
= Unimplemented
Figure 12-2. Port A Data Register (PTA) PTA[5:0] -- Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. AWUL -- Auto Wake-up Latch Data Bit This is a read-only bit which has the value of the auto wake-up interrupt request latch. The wake-up request signal is generated internally (see 14.4.4 Auto Wake-up Interrupt Request). There is no PTA6 port nor any of the associated bits such as PTA6 data register, pullup enable or direction. KBI[5:0] -- Port A Keyboard Interrupts The keyboard interrupt enable bits, KBIE5-KBIE0, in the keyboard interrupt control enable register (KBIER) enable the port A pins as external interrupt pins (see Section 14. Keyboard Interrupt Module (KBI)).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 163
NON-DISCLOSURE
AGREEMENT
Bit 7
6
5
4
3
2
1
Bit 0
REQUIRED
logic level on the PTA2 pin. When the IRQ function is disabled, these instructions will behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will read the actual logic level on the pin.
Input/Output (I/O) Ports
12.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.
Address: $0004 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 DDRA5 DDRA4 DDRA3 5 4 3 2 0 DDRA1 DDRA0 1 Bit 0
AGREEMENT
REQUIRED
= Unimplemented
Figure 12-3. Data Direction Register A (DDRA) DDRA[5:0] -- Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input
NOTE:
NON-DISCLOSURE
Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 164 Input/Output (I/O) Ports MOTOROLA
Input/Output (I/O) Ports Port A
READ DDRA ($0004) PTAPUEx WRITE DDRA ($0004) INTERNAL DATA BUS RESET WRITE PTA ($0000) PTAx PTAx DDRAx 30 k
READ PTA ($0000)
TO KEYBOARD INTERRUPT CIRCUIT
Figure 12-4. Port A I/O Circuit
NOTE:
Figure 12-4 does not apply to PTA2 When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 165
NON-DISCLOSURE
AGREEMENT
REQUIRED
Figure 12-4 shows the port A I/O logic.
Input/Output (I/O) Ports
12.3.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each if the six port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output.
Address: $000B Bit 7 6 5 4 3 2 1 Bit 0
AGREEMENT
REQUIRED
Read: OSC2EN Write: Reset: 0 0 0 0 0 0 0 0 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0
= Unimplemented
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE) OSC2EN -- Enable PTA4 on OSC2 Pin This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is selected. This bit has no effect for the XTAL or external oscillator options. 1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4) 0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions PTAPUE[5:0] -- Port A Input Pullup Enable Bits These read/write bits are software programmable to enable pullup devices on port A pins. 1 = Corresponding port A pin configured to have internal pull if its DDRA bit is set to 0 0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit Table 12-1 summarizes the operation of the port A pins.
NON-DISCLOSURE
166
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Input/Output (I/O) Ports MOTOROLA
Input/Output (I/O) Ports Port B
PTAPUE Bit 1 0 X
DDRA Bit 0 0 1
PTA Bit X(1) X X
I/O Pin Mode Input, VDD(2) Input, Hi-Z(4) Output
Accesses to DDRA Read/Write DDRA5-DDRA0 DDRA5-DDRA0 DDRA5-DDRA0
Accesses to PTA Read Pin Pin PTA5-PTA0 Write PTA5-PTA0(3) PTA5-PTA0(3) PTA5-PTA0(5)
12.4 Port B
Port B is an 8-bit general purpose I/O port. Port B is only available on the MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4.
12.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port B pins.
Address: $0001 Bit 7 Read: PTB7 Write: Reset: Unaffected by reset PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 6 5 4 3 2 1 Bit 0
Figure 12-6. Port B Data Register (PTB) PTB[7:0] -- Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 167
NON-DISCLOSURE
AGREEMENT
1. X = don't care 2. I/O pin pulled to VDD by internal pullup. 3. Writing affects data register, but does not affect input. 4. Hi-Z = high impedance 5. Output does not apply to PTA2
REQUIRED
Table 12-1. Port A Pin Functions
Input/Output (I/O) Ports
12.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.
Address: $0005 Bit 7 Read: DDRB7 DDRB6 0 DDRB5 0 DDRB4 0 DDRB3 0 DDRB2 0 DDRB1 0 DDRB0 0 Write: Reset: 0 6 5 4 3 2 1 Bit 0
AGREEMENT
REQUIRED
Figure 12-7. Data Direction Register B (DDRB) DDRB[7:0] -- Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input
NOTE:
NON-DISCLOSURE
Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 12-8 shows the port B I/O logic.
READ DDRB ($0005) PTBPUEx WRITE DDRB ($0005) INTERNAL DATA BUS RESET WRITE PTB ($0001) PTBx PTBx DDRBx 30 k
READ PTB ($0001)
Figure 12-8. Port B I/O Circuit
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 168 Input/Output (I/O) Ports MOTOROLA
Input/Output (I/O) Ports Port B
Table 12-2. Port B Pin Functions
DDRB Bit 0 1 PTB Bit X(1) X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRB Read/Write DDRB7-DDRB0 DDRB7-DDRB0 Accesses to PTB Read Pin Pin Write PTB7-PTB0(3) PTB7-PTB0
1. X = don't care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect the input.
12.4.3 Port B Input Pullup Enable Register The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRBx bit is configured as output.
Address: $000C Bit 7 Read: PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0
= Unimplemented
Figure 12-9. Port B Input Pullup Enable Register (PTBPUE)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 169
NON-DISCLOSURE
AGREEMENT
REQUIRED
When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-2 summarizes the operation of the port B pins.
Input/Output (I/O) Ports
PTBPUE[7:0] -- Port B Input Pullup Enable Bits These read/write bits are software programmable to enable pullup devices on port B pins 1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0 0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its DDRB bit. Table 12-3 summarizes the operation of the port B pins.
REQUIRED
AGREEMENT
Table 12-3. Port B Pin Functions
PTBPUE Bit 1 0 X
1. 2. 3. 4.
DDRB Bit 0 0 1
PTB Bit X(1) X X
I/O Pin Mode Input, VDD(2) Input, Hi-Z(4) Output
Accesses to DDRB Read/Write DDRB7-DDRB0 DDRB7-DDRB0 DDRB7-DDRB0
Accesses to PTB Read Pin Pin PTB7-PTB0 Write PTB7-PTB0(3) PTB7-PTB0(3) PTB7-PTB0
X = don't care I/O pin pulled to VDD by internal pullup. Writing affects data register, but does not affect input. Hi-Z = high impedance
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 170 Input/Output (I/O) Ports MOTOROLA
Section 13. External Interrupt (IRQ)
13.1 Contents
13.2 13.3 13.4 13.5 13.6 13.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175
13.2 Introduction
The IRQ pin (external interrupt), shared with PTA2 (general purpose input) and keyboard interrupt (KBI), provides a maskable interrupt input.
13.3 Features
Features of the IRQ module include the following: * * * * * * External interrupt pin, IRQ IRQ interrupt control bits Hysteresis buffer Programmable edge-only or edge and level interrupt sensitivity Automatic interrupt acknowledge Selectable internal pullup resistor
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 171
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
External Interrupt (IRQ) 13.4 Functional Description
IRQ pin functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A 0 disables the IRQ function and IRQ will assume the other shared functionalities. A1 enables the IRQ function. A logic 0 applied to the external interrupt pin can latch a central processur unit (CPU) interrupt request. Figure 13-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: * * Vector fetch -- A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. Software clear -- Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ latch. Reset -- A reset automatically clears the interrupt latch.
AGREEMENT
REQUIRED
*
ACK1 RESET
NON-DISCLOSURE
INTERNAL ADDRESS BUS
VECTOR FETCH DECODER VDD IRQPUD INTERNAL PULLUP DEVICE VDD D IRQ CLR Q IRQF1 SYNCHRONIZER
TO CPU FOR BIL/BIH INSTRUCTIONS
CK IRQ FF IMASK1
IRQ INTERRUPT REQUEST
MODE1 HIGH VOLTAGE DETECT TO MODE SELECT LOGIC
Figure 13-1. IRQ Module Block Diagram
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 172 External Interrupt (IRQ) MOTOROLA
External Interrupt (IRQ) Functional Description
When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. When the interrupt pin is both falling-edge and low-level triggered, the CPU interrupt request remains set until both of the following occur: * * Vector fetch or software clear Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK1 bit in the ISCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK1 bit is clear.
NOTE:
Figure 13-2 provides a summary of the IRQ I/O register.
Addr.
Register Name IRQ Status and Control Read: Register Write: (INTSCR) See page 176. Reset:
Bit 7 0
6 0
5 0
4 0
3 IRQF1
2 0
1 IMASK1
Bit 0 MODE1 0
$001D
ACK1 0 0 0 0 0 0 0
= Unimplemented
Figure 13-2. IRQ I/O Register Summary
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 173
NON-DISCLOSURE
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See 7.7 Exception Control.
AGREEMENT
REQUIRED
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-level triggered. The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ pin.
External Interrupt (IRQ) 13.5 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE1 bit is set, the IRQ pin is both falling-edge sensitive and low-level sensitive. With MODE1 set, both of the following actions must occur to clear IRQ: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK1 bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK1 bit latches another interrupt request. If the IRQ mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. Return of the IRQ pin to logic 1 -- As long as the IRQ pin is at logic 0, IRQ remains active.
AGREEMENT
REQUIRED
*
NON-DISCLOSURE
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. If the MODE1 bit is clear, the IRQ pin is falling-edge sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF1 bit in the ISCR register can be used to check for pending interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes it useful in applications where polling is preferred.
NOTE:
When the IRQ function is enabled in the CONFIG2 register, the BIH and BIL instructions can be used to read the logic level on the IRQ pin. If the IRQ function is disabled, these instructions will behave as if the IRQ pin
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 174 External Interrupt (IRQ) MOTOROLA
External Interrupt (IRQ) IRQ Module During Break Interrupts
NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. An internal pullup resistor to VDD is connected to the IRQ pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).
The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. See Section 7. System Integration Module (SIM). To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the IRQ status and control register during the break state has no effect on the IRQ latch.
13.7 IRQ Status and Control Register
The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module, see Section 5. Configuration Register (CONFIG). The ISCR has the following functions: * * * * Shows the state of the IRQ flag Clears the IRQ latch Masks IRQ and interrupt request Controls triggering sensitivity of the IRQ interrupt pin
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 175
NON-DISCLOSURE
AGREEMENT
13.6 IRQ Module During Break Interrupts
REQUIRED
is a logic 1, regardless of the actual level on the pin. Conversely, when the IRQ function is enabled, bit 2 of the port A data register will always read a logic 0.
External Interrupt (IRQ)
REQUIRED
Address: $001D Bit 7 Read: Write: Reset: 0 0 0 0 0 0 6 0 5 0 4 0 3 IRQF1 IMASK1 ACK1 0 0 0 MODE1 2 1 Bit 0
= Unimplemented
Figure 13-3. IRQ Status and Control Register (INTSCR) IRQF1 -- IRQ Flag
AGREEMENT
This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK1 -- IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1 always reads as logic 0. Reset clears ACK1. IMASK1 -- IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK1. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE1 -- IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE1. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only
NON-DISCLOSURE
176
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 External Interrupt (IRQ) MOTOROLA
Section 14. Keyboard Interrupt Module (KBI)
14.1 Contents
14.2 14.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182 14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184 14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185 14.5 14.6 14.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187
The keyboard interrupt module (KBI) provides six independently maskable external interrupts, which are accessible via the PTA0-PTA5 pins, plus one internal maskable interrupt controlled by the auto wake-up logic.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 177
NON-DISCLOSURE
14.2 Introduction
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Keyboard Interrupt Module (KBI) 14.3 Features
Features of the keyboard interrupt module include: * * Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask One internal interrupt controlled by the auto wake-up logic, with separate interrupt enable bit, sharing the same keyboard interrupt mask Software configurable pullup device if input pin is configured as input port bit Programmable edge-only or edge and level interrupt sensitivity Exit from low-power modes
REQUIRED
* * *
AGREEMENT
Figure 14-1 provides a summary of the input/output (I/O) registers
Addr.
Register Name Keyboard Status Read: and Control Register Write: (KBSCR) See page 183. Reset:
Bit 7 0
6 0
5 0
4 0
3 KEYF
2 0
1 IMASKK
Bit 0 MODEK 0 KBIE0 0
$001A
ACKK 0 0 AWUIE 0 0 KBIE5 0 KBIE4 0 KBIE3 0 KBIE2 0 KBIE1 0 0 0 0 0 0 0
NON-DISCLOSURE
Read: Keyboard Interrupt Enable $001B Register (KBIER) Write: See page 184. Reset:
= Unimplemented
Figure 14-1. KBI I/O Register Summary
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 178 Keyboard Interrupt Module (KBI) MOTOROLA
Keyboard Interrupt Module (KBI) Functional Description
INTERNAL BUS
VECTOR FETCH DECODER KBI0 VDD ACKK RESET D CLR Q SYNCHRONIZER CK KEYBOARD INTERRUPT REQUEST KEYF
KBIE0 TO PULLUP ENABLE
KBI5
KEYBOARD INTERRUPT FF MODEK KBIE5
IMASKK
TO PULLUP ENABLE
AWUIREQ(1)
1. For AWUGEN logic refer to Figure 14-5.
Figure 14-2. Keyboard Interrupt Block Diagram Writing to the KBIE0-KBIE5 bits in the keyboard interrupt enable register (KBIER) independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pullup device irrespective of PTAPUEx bits in the port A input pullup enable register (see 12.3.3 Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wake-up interrupt input (see Figure 14-5). A logic 1 applied to the AWUIREQ input with auto wake-up interrupt request enabled, latches a keyboard interrupt request.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 179
NON-DISCLOSURE
AGREEMENT
. . .
REQUIRED
14.4 Functional Description
Keyboard Interrupt Module (KBI)
A keyboard interrupt is latched when one or more keyboard interrupt inputs goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. * If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one input because another input is still low, software can disable the latter input while it is low. If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt input is low.
REQUIRED
*
AGREEMENT
If the MODEK bit is set, the keyboard interrupt inputs are both falling edge and low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt inputs. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the central processor unit (CPU) loads the program counter with the vector address at locations $FFE0 and $FFE1. Return of all enabled keyboard interrupt inputs to logic 1 -- As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The auto wake-up interrupt input, AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR or reset.
NON-DISCLOSURE
*
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 180 Keyboard Interrupt Module (KBI) MOTOROLA
Keyboard Interrupt Module (KBI) Functional Description
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt input stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and then read the data register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. Auto wake-up latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This is a read-only bit which is occupying and empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit.
14.4.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. This does not apply to an auto wake-up interrupt, which is internally generated without pullup.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 181
NON-DISCLOSURE
AGREEMENT
REQUIRED
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order.
Keyboard Interrupt Module (KBI)
To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
NON-DISCLOSURE
AGREEMENT
REQUIRED
14.4.2 Keyboard Status and Control Register The keyboard status and control register (KBSCR): * * * * Flags keyboard interrupt requests Acknowledges keyboard interrupt requests Masks keyboard interrupt requests Controls keyboard interrupt triggering sensitivity
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 182 Keyboard Interrupt Module (KBI) MOTOROLA
Keyboard Interrupt Module (KBI) Functional Description
Address: $001A Bit 7 Read: Write: Reset: 0 0 0 0 0 0 6 0 5 0 4 0 3 KEYF 2 0 IMASKK ACKK 0 0 0 MODEK 1 Bit 0
= Unimplemented
Figure 14-3. Keyboard Status and Control Register (KBSCR) Bits 7-4 -- Not used These read-only bits always read as logic 0s. KEYF -- Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending on port A or auto wake-up. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK -- Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port A and auto wake-up logic. ACKK always reads as logic 0. Reset clears ACKK. IMASKK-- Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A or auto wake-up. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK -- Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A and auto wake-up. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 183
NON-DISCLOSURE
AGREEMENT
REQUIRED
Keyboard Interrupt Module (KBI)
14.4.3 Keyboard Interrupt Enable Register The port A keyboard interrupt enable register (KBIER) enables or disables each port A pin or auto wake-up to operate as a keyboard interrupt input.
Address: $001B Bit 7 Read: Write: 0 AWUIE Reset: 0 0 KBIE5 0 KBIE4 0 KBIE3 0 KBIE2 0 KBIE1 0 KBIE0 0 6 5 4 3 2 1 Bit 0
AGREEMENT
REQUIRED
Figure 14-4. Keyboard Interrupt Enable Register (KBIER) KBIE5-KBIE0 -- Port A Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin on port A to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin AWUIE -- Auto Wake-up Interrupt Enable Bit This read/write bit enables the auto wake-up interrupt input to latch interrupt requests. Reset clears AWUIE. 1 = Auto wake-up enabled as interrupt input 0 = Auto wake-up not enabled as interrupt input
NON-DISCLOSURE
184
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Keyboard Interrupt Module (KBI) MOTOROLA
Keyboard Interrupt Module (KBI) Functional Description
COPRS (FROM CONFIG1) AUTOWUGEN 1 = DIV SHORT 0 = DIV INT RC OSC EN 32KHz CLK 29 214 VDD TO PTA READ, BIT 6 D Q AWUL
OVERFLOW RST
E
AWUIREQ R TO KBI INTERRUPT LOGIC (SEE Figure 14-2)
CLRLOGIC CLEAR (CGMXCLK) BUSCLKX4 CLK RST RESET ISTOP RESET ACKK
RESET AWUIE
Figure 14-5. Auto Wake-up Interrupt Request Generation Logic The function of the auto wake-up logic is to generate periodic wake-up requests to bring the microcontroller unit (MCU) out of stop mode. The wake-up requests are treated as regular keyboard interrupt requests, with the difference that instead of a pin, the interrupt signal is generated by an internal logic. Entering stop mode will enable the auto wake-up generation logic. An internal RC oscillator (exclusive for the auto wake-up feature) drives the wake-up request generator. Once the overflow count is reached in the generator counter, a wake-up request, AWUIREQ, is latched and sent to the KBI logic (see Figure 14-2). Wake-up interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER is set.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 185
NON-DISCLOSURE
AGREEMENT
REQUIRED
14.4.4 Auto Wake-up Interrupt Request
Keyboard Interrupt Module (KBI)
The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was "borrowed" from the computer operating properly (COP) using the fact that the COP feature is idle (no MCU clock available) in stop mode. The typical values of the periodic wake-up request (5 V, room temperature) are: * * COPRS = 0: 512 ms COPRS = 1: 16 ms
REQUIRED
The auto wake-up RC oscillator is highly dependent on operating voltage and temperature. The wake-up request is latched to allow the interrupt source identification. The latched value, AWUL, can be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 14-2) has no effect on AWUL reading.
AGREEMENT
14.5 Wait Mode
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
NON-DISCLOSURE
14.6 Stop Mode
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 186 Keyboard Interrupt Module (KBI) MOTOROLA
Keyboard Interrupt Module (KBI) Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 187
NON-DISCLOSURE
AGREEMENT
REQUIRED
14.7 Keyboard Module During Break Interrupts
Keyboard Interrupt Module (KBI)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 188 Keyboard Interrupt Module (KBI) MOTOROLA
AGREEMENT
REQUIRED
Section 15. Computer Operating Properly (COP)
15.1 Contents
15.2 15.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192 15.5 15.6 15.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193
15.2 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration 1 (CONFIG1) register.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 189
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Computer Operating Properly (COP) 15.3 Functional Description
REQUIRED
SIM MODULE BUSCLKX4 12-BIT SIM COUNTER SIM RESET CIRCUIT RESET STATUS REGISTER
CLEAR ALL STAGES
CLEAR STAGES 5-12
INTERNAL RESET SOURCES(1) RESET VECTOR FETCH COPCTL WRITE
AGREEMENT
COP CLOCK
COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COPD (FROM CONFIG1) RESET COPCTL WRITE COP RATE SELECT (COPRS FROM CONFIG1) CLEAR COP COUNTER
NON-DISCLOSURE
1. See Section 7. System Integration Module (SIM) for more details.
Figure 15-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 - 24 or 213 - 24 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 218 - 24 BUSCLKX4 cycle overflow option, a 8-MHz crystal gives a COP timeout period of 32.766 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12-5 of the SIM counter.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 190 Computer Operating Properly (COP) MOTOROLA
COP TIMEOUT
Computer Operating Properly (COP) I/O Signals
A COP reset pulls the RST pin low for 32 x BUSCLKX4 cycles and sets the COP bit in the reset status register (RSR). See 7.9.1 SIM Reset Status Register.
NOTE:
15.4 I/O Signals
The following paragraphs describe the signals shown in Figure 15-1.
15.4.1 BUSCLKX4 BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the crystal frequency or the RC-oscillator frequency.
15.4.2 COPCTL Write Writing any value to the COP control register (COPCTL) (see 15.5 COP Control Register) clears the COP counter and clears bits 12-5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector.
15.4.3 Power-On Reset The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 x BUSCLKX4 cycles after power up.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 191
NON-DISCLOSURE
AGREEMENT
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
REQUIRED
NOTE:
Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow.
Computer Operating Properly (COP)
15.4.4 Internal Reset An internal reset clears the SIM counter and the COP counter.
REQUIRED
15.4.5 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter.
15.4.6 COPD (COP Disable)
AGREEMENT
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG). See Section 5. Configuration Register (CONFIG).
15.4.7 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1 (CONFIG1). See Section 5. Configuration Register (CONFIG).
NON-DISCLOSURE
15.5 COP Control Register
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF Bit 7 Read: Write: Reset: 6 5 4 3 2 1 Bit 0
LOW BYTE OF RESET VECTOR CLEAR COP COUNTER Unaffected by reset
Figure 15-2. COP Control Register (COPCTL)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 192 Computer Operating Properly (COP) MOTOROLA
Computer Operating Properly (COP) Interrupts
The COP does not generate CPU interrupt requests.
15.7 Monitor Mode
The COP is disabled in monitor mode when VTST is present on the IRQ pin.
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
15.8.1 Wait Mode The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter.
15.8.2 Stop Mode Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.
15.9 COP Module During Break Mode
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 193
NON-DISCLOSURE
AGREEMENT
15.8 Low-Power Modes
REQUIRED
15.6 Interrupts
Computer Operating Properly (COP)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 194 Computer Operating Properly (COP) MOTOROLA
AGREEMENT
REQUIRED
Section 16. Low-Voltage Inhibit (LVI)
16.1 Contents
16.2 16.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198 16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 16.6 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) 195
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Low-Voltage Inhibit (LVI) 16.3 Features
Features of the LVI module include: * * * * Programmable LVI reset Programmable power consumption Selectable LVI trip voltage Programmable stop mode operation
REQUIRED AGREEMENT
16.4 Functional Description
Figure 16-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are user selectable options found in the configuration register (CONFIG1). See Section 5. Configuration Register (CONFIG).
VDD STOP INSTRUCTION LVISTOP FROM CONFIG FROM CONFIG LVIRSTD
NON-DISCLOSURE
LVIPWRD FROM CONFIG LOW VDD DETECTOR VDD > LVITRIP = 0 VDD LVITRIP = 1 LVIOUT LVI5OR3 FROM CONFIG LVI RESET
Figure 16-1. LVI Module Block Diagram The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 196 Low-Voltage Inhibit (LVI) MOTOROLA
Low-Voltage Inhibit (LVI) Functional Description
NOTE:
After a power-on reset, the LVI's default mode of operation is 3 volts. If a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation. If the user requires 5-V mode and sets the LVI5OR3 bit after power-on reset while the VDD supply is not above the VTRIPR for 5-V mode, the microcontroller unit (MCU) will immediately go into reset. The next time the LVI releases the reset, the supply will be above the VTRIPR for 5-V mode. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See Section 7. System Integration Module (SIM) for the reset recovery sequence. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and can be used for polling LVI operation when the LVI reset is disabled.
16.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) 197
NON-DISCLOSURE
AGREEMENT
REQUIRED
mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip thresholds are specified in 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics.
Low-Voltage Inhibit (LVI)
16.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.
REQUIRED
16.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
AGREEMENT
16.4.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection.
NOTE:
NON-DISCLOSURE
The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics for the actual trip point voltages.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 198 Low-Voltage Inhibit (LVI) MOTOROLA
Low-Voltage Inhibit (LVI) LVI Status Register
The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level while LVI resets have been disabled.
Address: $FE0C Bit 7 Read: LVIOUT Write: Reset: 0 0 0 0 0 R 0 = Reserved 0 0 6 0 5 0 4 0 3 0 2 0 1 0 Bit 0 R
= Unimplemented
Figure 16-2. LVI Status Register (LVISR) LVIOUT -- LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared when VDD voltage rises above VTRIPR. The difference in these threshold levels results in a hysteresis that prevents oscillation into and out of reset (see Table 16-1). Reset clears the LVIOUT bit. Table 16-1. LVIOUT Bit Indication
VDD VDD > VTRIPR VDD < VTRIPF VTRIPF < VDD < VTRIPR LVIOUT 0 1 Previous value
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) 199
NON-DISCLOSURE
AGREEMENT
REQUIRED
16.5 LVI Status Register
Low-Voltage Inhibit (LVI) 16.6 LVI Interrupts
The LVI module does not generate interrupt requests.
REQUIRED
16.7 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
16.7.1 Wait Mode
AGREEMENT
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode.
16.7.2 Stop Mode When the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration register is set, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode.
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 200 Low-Voltage Inhibit (LVI) MOTOROLA
Section 17. Break Module (BREAK)
17.1 Contents
17.2 17.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205 17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206 17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
17.2 Introduction
This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Break Module (BREAK) 201
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Break Module (BREAK) 17.3 Features
Features of the break module include: * * * * Accessible input/output (I/O) registers during the break Interrupt Central processor unit (CPU) generated break interrupts Software-generated break interrupts Computer operating properly (COP) disabling during break interrupts
AGREEMENT
REQUIRED
17.4 Functional Description
When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: * * A CPU generated address (the address in the program counter) matches the contents of the break address registers. Software writes a logic 1 to the BRKA bit in the break status and control register.
NON-DISCLOSURE
When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation. Figure 17-1 shows the structure of the break module. Figure 17-2 provides a summary of the I/O registers.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 202 Break Module (BREAK) MOTOROLA
Break Module (BREAK) Functional Description
BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR ADDRESS BUS[15:0] CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW BKPT (TO SIM)
ADDRESS BUS[7:0]
Figure 17-1. Break Module Block Diagram
Addr.
Register Name Read: Break Status Register (BSR) Write: See page 208. Reset: Read: Break Auxiliary Register (BRKAR) Write: See page 207. Reset: Read: Break Flag Control Register (BFCR) Write: See page 209. Reset: Read: Break Address High Register (BRKH) Write: See page 206. Reset: Read: Break Address Low Register (BRKL) Write: See page 206. Reset:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW Note(1) 0
Bit 0 R
$FE00
$FE02
Bit 7 0 BCFE 0 Bit15 0 Bit 7 0 BRKE 0
Bit 6 0 R
Bit 5 0 R
Bit 4 0 R
Bit 3 0 R
Bit 2 0 R
Bit 1 0 R
Bit 0 0 R
$FE03
$FE09
Bit14 0 Bit 6 0 BRKA 0
Bit13 0 Bit 5 0 0
Bit12 0 Bit 4 0 0
Bit11 0 Bit 3 0 0
Bit10 0 Bit 2 0 0
Bit9 0 Bit 1 0 0
Bit8 0 Bit 0 0 0
$FE0A
Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 205. Reset: 1. Writing a logic 0 clears SBSW.
0
0 R
0 = Reserved
0
0
0
= Unimplemented
Figure 17-2. Break I/O Register Summary
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Break Module (BREAK) 203
NON-DISCLOSURE
AGREEMENT
REQUIRED
ADDRESS BUS[15:8]
Break Module (BREAK)
17.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See 7.9.2 Break Flag Control Register and the Break Interrupts subsection for each module.
REQUIRED
17.4.2 CPU During Break Interrupts The CPU starts a break interrupt by:
AGREEMENT
* *
Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.
17.4.3 TIM During Break Interrupts A break interrupt stops the timer counter.
NON-DISCLOSURE
17.4.4 COP During Break Interrupts The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 204 Break Module (BREAK) MOTOROLA
Break Module (BREAK) Break Module Registers
These registers control and monitor operation of the break module: * * * * * Break status and control register (BRKSCR) Break address register high (BRKH) Break address register low (BRKL) Break status register (BSR) Break flag control register (BFCR)
17.5.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits.
Address: $FE0B Bit 7 Read: BRKE Write: Reset: 0 0 0 0 0 0 0 0 BRKA 6 5 0 4 0 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 17-3. Break Status and Control Register (BRKSCR) BRKE -- Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled BRKA -- Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = Break address match 0 = No break address match
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Break Module (BREAK) 205
NON-DISCLOSURE
AGREEMENT
REQUIRED
17.5 Break Module Registers
Break Module (BREAK)
17.5.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.
Address: $FE09 Bit 7 Read: Bit 15 Write: Reset: 0 Bit 14 0 Bit 13 0 Bit 12 0 Bit 11 0 Bit 10 0 Bit 9 0 Bit 8 0 6 5 4 3 2 1 Bit 0
AGREEMENT
REQUIRED
Figure 17-4. Break Address Register High (BRKH)
Address: $FE0A Bit 7 Read: Bit 7 Write: Reset: 0 0 0 0 0 0 0 0 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 17-5. Break Address Register Low (BRKL)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 206 Break Module (BREAK) MOTOROLA
Break Module (BREAK) Break Module Registers
The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the MCU is in a state of break interrupt with monitor mode.
Address: $FE02 Bit 7 Read: Write: 0 6 0 5 0 4 0 3 0 2 0 1 0 BDCOP Reset: 0 0 0 0 0 0 0 0 Bit 0
= Unimplemented
Figure 17-6. Break Auxiliary Register (BRKAR) BDCOP -- Break Disable COP Bit This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit. 1 = COP disabled during break interrupt 0 = COP enabled during break interrupt.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Break Module (BREAK) 207
NON-DISCLOSURE
AGREEMENT
REQUIRED
17.5.3 Break Auxiliary Register
Break Module (BREAK)
17.5.4 Break Status Register The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode. This register is only used in emulation mode.
Address: $FE00 Bit 7 Read: R Write: Reset: R = Reserved R R R R R 6 5 4 3 2 1 SBSW Note(1) 0 1. Writing a logic 0 clears SBSW. R Bit 0
AGREEMENT
REQUIRED
Figure 17-7. Break Status Register (BSR) SBSW -- SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Wait mode was exited by break interrupt 0 = Wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it.
NON-DISCLOSURE
208
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 Break Module (BREAK) MOTOROLA
Break Module (BREAK) Low-Power Modes
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: Write: Reset: BCFE 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
Figure 17-8. Break Flag Control Register (BFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. If enabled, the break module will remain enabled in wait and stop modes. However, since the internal address bus does not increment in these modes, a break interrupt will never be triggered.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Break Module (BREAK) 209
NON-DISCLOSURE
17.6 Low-Power Modes
AGREEMENT
REQUIRED
17.5.5 Break Flag Control Register
Break Module (BREAK)
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 210 Break Module (BREAK) MOTOROLA
AGREEMENT
REQUIRED
Section 18. Electrical Specifications
18.1 Contents
18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221 18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
18.2 Introduction
This section contains electrical and timing specifications.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 211
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Electrical Specifications 18.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it.
REQUIRED
NOTE:
This device is not guaranteed to operate properly at the maximum ratings. Refer to 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics for guaranteed operating conditions.
Characteristic(1) Supply voltage Input voltage Mode entry voltage, IRQ pin Maximum current per pin excluding PTA0-PTA5, VDD, and VSS Maximum current for pins PTA0-PTA5 Storage temperature Maximum current out of VSS Maximum current into VDD Symbol VDD VIN VTST I IPTA0--IPTA5 TSTG IMVSS IMVDD Value -0.3 to +6.0 VSS -0.3 to VDD +0.3 VSS - 0.3 to +9.1 15 25 -55 to +150 100 100 Unit V V V mA mA C mA mA
NON-DISCLOSURE
AGREEMENT
1. Voltages references to VSS.
NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 212 Electrical Specifications MOTOROLA
Electrical Specifications Functional Operating Range
Characteristic Operating temperature range Operating voltage range
Symbol TA VDD
Value - 40 to +125 - 40 to +85 5 V 10% - 40 to +125 - 40 to +85 3 V 10%
Unit C V
18.5 Thermal Characteristics
Characteristic Thermal resistance 8-pin PDIP 8-pin SOIC 16-pin PDIP 16-pin SOIC 16-pin TSSOP I/O pin power dissipation Power dissipation(1) Symbol Value 95 70 66 70 70 User determined PD = (IDD x VDD) + PI/O = K/(TJ + 273C) PD x (TA + 273C) + PD2 x JA TA + (PD x JA) 100 Unit
JA
C/W
PI/O PD
W W
Constant(2) Average junction temperature Maximum junction temperature
K TJ TJM
W/C C C
1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 213
NON-DISCLOSURE
AGREEMENT
REQUIRED
18.4 Functional Operating Range
Electrical Specifications 18.6 5-V DC Electrical Characteristics
Characteristic(1) Output high voltage ILoad = -2.0 mA, all I/O pins ILoad = -10.0 mA, all I/O pins ILoad = -15.0 mA, PTA0-PTA5 only Output low voltage ILoad = 1.6 mA, all I/O pins ILoad = 10.0 mA, all I/O pins ILoad = 15.0 mA, PTA0-PTA5 only Input high voltage PTA0-PTA5, PTB0-PTB7, RST, IRQ, OSC1 Input low voltage PTA0-PTA5, PTB0-PTB7, RST, IRQ, OSC1 DC injection current, all ports Total dc current injection (sum of all I/O) VDD supply current Run, fOP = 4 MHz(3) Wait Stop(5), - 40C to 85C Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR rearm voltage(6) POR rise time ramp rate(7) Monitor mode entry voltage Pullup resistors(8) RST, IRQ, PTA0-PTA5, PTB0-PTB7 Low-voltage inhibit reset, trip falling voltage
(4)
REQUIRED
Symbol
Min VDD -0.4 VDD -1.5 VDD -0.8
Typ(2)
Max
Unit
VOH
-- -- --
-- -- --
V
VOL
-- -- -- 0.7 x VDD VSS -2 -25
-- -- -- -- -- -- --
0.4 1.5 0.8 VDD 0.3 x VDD +2 +25
V
AGREEMENT
VIH VIL IINJ IINJTOT
V V mA mA
IDD
-- -- --
7 5 0.1 -- -- -- -- -- -- -- 26 4.20
10 5.5 5 10 1 12 8 100 -- 9.1 36 4.50
mA mA A A A pF mV V/ms V k V
NON-DISCLOSURE
IIL IIN COUT CIN VPOR RPOR VTST RPU VTRIPF
-- -- -- -- 0 0.035 VDD + 2.5 16 3.90
Continued on next page
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 214 Electrical Specifications MOTOROLA
Electrical Specifications 5-V Control Timing
Symbol VTRIPR VHYS
Min 4.00 --
Max 4.60 --
Unit V mV
Low-voltage inhibit reset, trip rising voltage Low-voltage inhibit reset/recover hysteresis
4.30 100
18.7 5-V Control Timing
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) Symbol fOP tIRL Min -- 750 Max 8 -- Unit MHz ns
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 215
NON-DISCLOSURE
1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
AGREEMENT
1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. 5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as inputs with pullups enabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. R PU1 and RPU2 are measured at VDD = 5.0 V.
REQUIRED
Characteristic(1)
Typ(2)
Electrical Specifications 18.8 5-V Oscillator Characteristics
Characteristic Internal oscillator frequency Crystal frequency, XTALCLK RC oscillator frequency, RCCLK External clock reference frequency(1) Crystal load capacitance (2) Crystal fixed capacitance(2) Symbol fINTCLK fOSCXCLK fRCCLK fOSCXCLK CL C1 C2 RB RS REXT Min -- 1 2 dc -- -- -- -- -- Typ 12.8 -- -- -- -- 2 x CL 2 x CL 10 -- See Figure 18-1 Max -- 32 12 32 -- -- -- -- -- Unit MHz MHz MHz MHz -- -- -- M -- --
AGREEMENT
REQUIRED
Crystal tuning capacitance(2) Feedback bias resistor Series resistor(2), (3) RC oscillator external resistor
1. No more than 10% duty cycle deviation from 50%. 2. Consult crystal vendor data sheet. 3. Not required for high frequency crystals
NON-DISCLOSURE
14 5 V @ 25C 12 RC FREQUENCY, fRCCLK (MHz) MCU 10 8 6 VDD 4 2 0 0 10 20 30 40 50 Resistor, REXT (k) REXT OSC1
Figure 18-1. RC versus Frequency (5 Volts @ 25C)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 216 Electrical Specifications MOTOROLA
Electrical Specifications 3-V DC Electrical Characteristics
Characteristic(1) Output high voltage ILoad = -0.6 mA, all I/O pins ILoad = -4.0 mA, all I/O pins ILoad = -10.0 mA, PTA0-PTA4 only Output low voltage ILoad = 0.5 mA, all I/O pins ILoad = 6.0 mA, all I/O pins ILoad = 10.0 mA, PTA0-PTA5 only Input high voltage PTA0-PTA5, PTB0-PTB7, RST, IRQ, OSC1 Input low voltage PTA0-PTA5, PTB0-PTB7, RST, IRQ, OSC1 DC injection current, all ports Total dc current injection (sum of all I/O) VDD supply current Run, fOP = 2 MHz(3) Wait, fOP = 2 MHz
(4)
Symbol
Min VDD -0.3 VDD - 1.0 VDD - 0.6 -- -- --
Typ(2)
Max
Unit
VOH
-- -- --
-- -- --
V
VOL
-- -- --
0.3 1.0 0.6
V
VIH VIL IINJ IINJTOT
0.7 x VDD VSS -2 -25
-- -- -- --
VDD 0.3 x VDD +2 +25
V V mA mA
IDD
-- -- --
5 1 0.1 -- -- -- -- -- -- -- 26 2.55
8 2.5 5 10 1 12 8 100 -- VDD + 4.0 36 2.70
mA mA A
Stop(5),- 40C to 85C Digital I/O ports Hi-Z leakage current Input leakage current Capacitance Ports (as input or output) POR rearm voltage(6) POR rise time ramp rate(7) Monitor mode entry voltage Pullup resistors(8) RST, IRQ, PTA0-PTA5, PTB0-PTB7 Low-voltage inhibit reset, trip falling voltage IIL IIN COUT CIN VPOR RPOR VTST RPU VTRIPF
-- -- -- -- 0 0.035 VDD + 2.5 16 2.40
A pF mV V/ms V k V
Continued on next page
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 217
NON-DISCLOSURE
A
AGREEMENT
REQUIRED
18.9 3-V DC Electrical Characteristics
Electrical Specifications
REQUIRED
Characteristic(1) Low-voltage inhibit reset, trip rising voltage Low-voltage inhibit reset/recover hysteresis
Symbol VTRIPR VHYS
Min 2.50 --
Typ(2) 2.65 60
Max 2.80 --
Unit V mV
AGREEMENT
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. 5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as inputs with pullups enabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum V DD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0 V
18.10 3-V Control Timing
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) Symbol fOP tIRL Min -- 1.5 Max 4 -- Unit MHz s
NON-DISCLOSURE
1. V DD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 218 Electrical Specifications MOTOROLA
Electrical Specifications 3-V Oscillator Characteristics
Characteristic Internal oscillator frequency Crystal frequency, XTALCLK RC oscillator frequency, RCCLK External clock reference frequency(1) Crystal load capacitance (2) Crystal fixed capacitance(2) Crystal tuning capacitance(2) Feedback bias resistor Series resistor(2), (3) RC oscillator external resistor
1. No more than 10% duty cycle deviation from 50% 2. Consult crystal vendor data sheet 3. Not required for high frequency crystals
Symbol fINTCLK fOSCXCLK fRCCLK fOSCXCLK CL C1 C2 RB RS REXT
Min -- 1 2 dc -- -- -- -- --
Typ 12.8 -- -- -- -- 2 x CL 2 x CL 10 -- See Figure 18-2
Max -- 16 12 16 -- -- -- -- --
Unit MHz MHz MHz MHz -- -- -- M -- --
14 12
MCU
RC FREQUENCY, fRCCLK (MHz) 10 8 6 VDD 4 2 0 0 10 20 30 RESISTOR, REXT (K) 40 50 REXT OSC1
Figure 18-2. RC versus Frequency (3 Volts @ 25C)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 219
NON-DISCLOSURE
3 V @ 25C
AGREEMENT
REQUIRED
18.11 3-V Oscillator Characteristics
Electrical Specifications 18.12 Typical Supply Currents
14 12 10 8 IDD (mA) 6 4 2 0 5.5 V 3.3 V 0 1 2 3 4 5 fOP OR fBUS (MHz) 6 7 8 9
AGREEMENT
REQUIRED
Figure 18-3. Typical Operating IDD, with All Modules Turned On (25C)
2 1.75 1.50 1.25 IDD (mA) 1 0.75 0.5 0.25 5.5 V 3.3 V 0 1 2 3 4 fOP OR fBUS (MHz) 5 6 7 8
NON-DISCLOSURE
0
Figure 18-4. Typical Wait Mode IDD, with ADC Turned On (25C)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 220 Electrical Specifications MOTOROLA
Electrical Specifications Analog-to-Digital Converter Characteristics
Characteristic Supply voltage Input voltages Resolution Absolute accuracy ADC internal clock Conversion range Power-up time Conversion time Sample time(1) Zero input reading(2) Full-scale reading(3) Input capacitance Input leakage(3)
Symbol VDDAD VADIN BAD AAD fADIC RAD tADPU tADC tADS ZADI FADI CADI --
Min 2.7 (VDD min) VSS 8 0.5 0.5 VSS 16 16 5 00 FE -- --
Max 5.5 (VDD max) VDD 8 1.5 1.048 VDD
Unit V V Bits LSB MHz V tADIC cycles
Comments -- -- -- Includes quantization tADIC = 1/fADIC, tested only at 1 MHz -- tADIC = 1/fADIC tADIC = 1/fADIC tADIC = 1/fADIC VIN = VSS VIN = VDD Not tested --
17 -- 01 FF 8 1
tADIC cycles tADIC cycles Hex Hex pF A
1. Source impedances greater than 10 k adversely affect internal RC charging time during input sampling. 2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 3. The external system error caused by input leakage current is approximately equal to the product of R source and input current.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Electrical Specifications 221
NON-DISCLOSURE
AGREEMENT
REQUIRED
18.13 Analog-to-Digital Converter Characteristics
Electrical Specifications 18.14 Memory Characteristics
Characteristic RAM data retention voltage FLASH program bus clock frequency FLASH read bus clock frequency FLASH page erase time <1 K cycles <10 K cycles FLASH mass erase time FLASH PGM/ERASE to HVEN set up time FLASH high-voltage hold time FLASH high-voltage hold time (mass erase) FLASH program hold time FLASH program time FLASH return to read time FLASH cumulative program hv period FLASH row erase endurance(6) Symbol VRDR -- fRead(1) tErase(2) tMErase(3) tnvs tnvh tnvhl tpgs tPROG trcv(4) tHV(5) -- -- -- Min 1.3 1 32 k Max -- -- 8M Unit V MHz Hz
REQUIRED
1 4 4 10 5 100 5 30 1 -- 10 k 10 k 10
-- -- -- -- -- -- -- 40 -- 4 -- -- --
ms
AGREEMENT
ms us us us us us us ms Cycles Cycles Years
NON-DISCLOSURE
FLASH row program endurance(7) FLASH data retention time(8)
1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG x 32) tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 222 Electrical Specifications MOTOROLA
Section 19. Mechanical Specifications
19.1 Contents
19.2 19.3 19.4 19.5 19.6 19.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8-Pin Small Outline Integrated Circuit Package (Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16-Pin Plastic Dual In-Line Package (Case #648D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 16-Pin Thin Shrink Small Outline Package (Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
19.2 Introduction
This section gives the dimensions for: * * * * * 8-pin plastic dual in-line package (PDIP) 8-pin small outline integrated circuit (SOIC) package 16-pin PDIP 16-pin SOIC 16-pin thin shrink small outline package (TSSOP)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Mechanical Specifications 223
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Mechanical Specifications 19.3 8-Pin Plastic Dual In-Line Package (Case #626)
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. MILLIMETERS INCHES MIN MAX MIN MAX 9.40 10.16 0.370 0.400 6.10 6.60 0.240 0.260 3.94 4.45 0.155 0.175 0.38 0.51 0.015 0.020 1.02 1.78 0.040 0.070 2.54 BSC 0.100 BSC 0.76 1.27 0.030 0.050 0.20 0.30 0.008 0.012 2.92 3.43 0.115 0.135 7.62 BSC 0.300 BSC --10 --10 0.76 1.01 0.030 0.040
REQUIRED
8
5
-B1 4
F
NOTE 2
-AL
AGREEMENT
C -TSEATING PLANE
J N D K
M
DIM A B C D F G H J K L M N
M
H
G 0.13 (0.005) TA
M
B
M
STYLE 1: 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. VCC
19.4 8-Pin Small Outline Integrated Circuit Package (Case #968)
8 5
LE Q1 E HE Mx
NON-DISCLOSURE
1
4
L DETAIL P
Z D e P A
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSION D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.18 0.27 5.10 5.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 0 10 0.70 0.90 --0.94 INCHES MIN MAX --- 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.201 0.217 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 0 10 0.028 0.035 --- 0.037
b 0.13 (0.005)
M
c 0.10 (0.004)
DIM A A1 b c D E e HE L LE M Q1 Z
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 224 Mechanical Specifications MOTOROLA
A1
Mechanical Specifications 16-Pin Plastic Dual In-Line Package (Case #648D)
-A16 9
-B1 8
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 5. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 (0.010). 6. ROUNDED CORNERS OPTIONAL.
F S
C -TK
SEATING PLANE
L
DIM A B C D F G H J K L M S
H G D 16 PL 0.25 (0.010)
J
M
M
TB
S
A
S
19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G)
D
16 M 9
A q
1
8
16X
B TA
S
B B
S
0.25
M
A1
14X
e
SEATING PLANE
T
C
MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.40 1.00 q 0 7
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Mechanical Specifications 225
NON-DISCLOSURE
NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
H
B
0.25
A
h X 45
M
8X
E
L
AGREEMENT
INCHES MILLIMETERS MIN MAX MIN MAX 0.740 0.760 18.80 19.30 0.245 0.260 6.23 6.60 0.145 0.175 3.69 4.44 0.015 0.021 0.39 0.53 0.050 0.070 1.27 1.77 0.100 BSC 2.54 BSC 0.050 BSC 1.27 BSC 0.008 0.015 0.21 0.38 0.120 0.140 3.05 3.55 0.295 0.305 7.50 7.74 0 10 0 10 0.015 0.035 0.39 0.88
REQUIRED
19.5 16-Pin Plastic Dual In-Line Package (Case #648D)
Mechanical Specifications 19.7 16-Pin Thin Shrink Small Outline Package (Case #948F)
16X K REF
REQUIRED
0.10 (0.004) M T U 0.15 (0.006) T U
S
S
V
S
K K1
16
2X
L/2
9
J1 B -USECTION N-N J
L
PIN 1 IDENT. 1 8
N
AGREEMENT
0.25 (0.010) 0.15 (0.006) T U
S
A -VN F DETAIL E
M
NOTES: 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: MILLIMETER. 6. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 7. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 8. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 9. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 10. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.
C 0.10 (0.004) -T- SEATING
PLANE
-W-
H D G
DETAIL E
DIM A B C D F G H J J1 K K1 L M
MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.18 0.28 0.007 0.011 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0 8 0 8
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 226 Mechanical Specifications MOTOROLA
Section 20. Ordering Information
20.1 Contents
20.2 20.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
20.2 Introduction
This section contains ordering numbers for MC68HC908QY1, MC68HC908QY2, MC68HC908QY4, MC68HC908QT1, MC68HC908QT2, and MC69HC908QT4.
20.3 MC Order Numbers
Table 20-1. MC Order Numbers
MC Order Number MC68HC908QY1 MC68HC908QY2 MC68HC908QY4 MC68HC908QT1 MC68HC908QT2 MC68HC908QT4 ADC -- Yes Yes -- Yes Yes FLASH Memory 1536 bytes 1536 bytes 4096 bytes 1536 bytes 1536 bytes 4096 bytes 8-pins PDIP or SOIC Package 16-pins PDIP, SOIC, and TSSOP
Temperature and package designators: C = -40C to +85C V = -40C to +105C (available for VDD = 5 V only) M = -40C to +125C (available for VDD = 5 V only) P = Plastic dual in-line package (PDIP) DW = Small outline integrated circuit package (SOIC) DT = Thin shrink small outline package (TSSOP)
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 MOTOROLA Ordering Information 227
NON-DISCLOSURE
AGREEMENT
REQUIRED
Data Sheet -- MC68HC908QY4
Ordering Information
NON-DISCLOSURE
MC68HC908QY4*MC68HC908QT4*MC68HC908QY2*MC68HC908QT2*MC68HC908QY1*MC68HC908QT1 228 Ordering Information MOTOROLA
AGREEMENT
REQUIRED
NON-DISCLOSURE
AGREEMENT
REQUIRED
REQUIRED
HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 HOME PAGE: http://www.motorola.com/semiconductors
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
NON-DISCLOSURE
AGREEMENT
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
(c) Motorola, Inc. 2002
MC68HC908QY4/D


▲Up To Search▲   

 
Price & Availability of M68HC08

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X